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Preface

The purpose of this thesis was to investigate the critical

components of an autonomous vehicle's "intelligence". This

thesis gives particular emphasis to the desirable attributes of

an operating system and mission planner, taking concepts from the

field of cognitive psychology and natural language text under-

s tanding and incorporating them into the vehicle's planning

architecture.

4 The argument given here is that in order for an autonomous

vehicle to be truly intelligent, and hence truly autonomous, it

must have the ability to understand its environment as well as

the ability to plan in it. Therefore, a blackboard control

*architecture was adopted for the operating system in order to

provide flexibility. The mission planner architecture, on the

other hand, was based on a production system using meta-

* knowledge, that is, knowledge about the planning process, in

order to construct plans. The planner is the plan generator,

while the operating system is a plan projector and goal detector.

Although the blackboard control architecture is well known,

I feel that the particular operating system architecture combined

with the planner architecture implemented here provides a more

* powerful and flexible mechanism for overall control of the auto-

nomous vehicle.

Samuel E. Stockbridge
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Abstract

This study investigates a software architecture for autono-

mous vehicle control. The autonomous vehicle's planning ability

is divided into operating system functions and mission planning

system functions. The blackboard control architecture is adopted

for the operating system design with implementation using the

ROSS programming language.

The planning system incorporates elements of a planner and

understander by declaratively encoding meta-knowledge, or

knowledge about the planning process. By separating the

knowledge about how to plan from the specific domain knowledge,

an understander can use this knowledge about how plans are con-

structed, in combination with the specific domain knowledge, in

the understanding process. Likewise, a planner can use this same

knowledge in the planning process. Thus, a great deal of flexi-

bility is attained by dividing the knowledge base into meta-rules

and domain specific rules.

The planning system constructs an agenda of scripts which

directs the control flow in the operating system. The operating

system is given the additional duties of goal detector and plan

projector in order to simulate the plan steps proposed by the

planner. Hence, the operating system detects any errors in the

vi



plan and terms these errors in the form of goals the planner can

; .. understand.

The implementation demonstrates the benefits of using meta-

planning concepts combined with a blackboard control architecture

to provide an autonomous vehicle with a more flexible and power-

ful planning capability.
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AUTONOMOUS VEHICLE MISSION PLANNING USING AI TECHNIQUES

I. Introduction N

Background

The ability to maintain and service aircraft in a Nuclear-

Biological -Chemical (NBC) contaminated environment has long been

* of interest to the Air Force. Research efforts by the Air Force

have been concentrated in reducing the risk to ground crews while

still maintaining the vital function of aircraft maintenance.

* One approach investigated by the Air Force involves the use of an

autonomous vehicle (such as a robot) to perform the tasks of

*aircraft maintenance (3; 12). To accomplish the job, the autono-

mous vehicle must have the ability to:

1. Plan actions and prioritize assigned tasks

2. Plan a path to the appropriate aircraft

3. Handle unforeseen problems

4. Accomplish the required maintenance

5. Return to the work station

A previous AFIT thesis effort focused on the problem of

planning an optimum path and navigating the autonomous vehicle to

*its destination (10). The effort resulted in a software algo-

rithm that can determine the shortest path to a goal around

* * - stationary objects in an aircraft hangar. The algorithm requires



*: an accurate representation of the vehicle's environment along

with predetermined information such as the current location of

the vehicle and the destination. Given this information, the

algorithm can simulate the movements of the vehicle through an -.

aircraft hangar; however, it cannot avoid dynamic objects (ob-

jects in motion) that may cross its path. Nevertheless, the

algorithm provides an excellent foundation for further research.

Problem

The ability to plan actions and prioritize tasks is crucial

to the development of an autonomous vehicle capable of operating

with minimal human intervention. This research effort will con-

centrate on developing a software algorithm to perform the

mission planning function while using available on-board

resources effectively.

There are many tasks that a human ground crewman performs

while striving to accomplish his ultimate goal. For example, if

his ultimate goal is to repair a Jet engine, he must first have Lj

the necessary tools with him. If he does not have the tools, he

must construct a plan to obtain them. Once he has obtained the

tools, he must next construct a plan to get to the appropriate

aircraft so that he can accomplish his ultimate goal. Humans do

not consciously construct plans for these tasks because they have

the ability to learn and to use their prior experiences in

similar situations. An autonomous vehicle, on the other hand,

must have all this detailed knowledge available to it. It must

know what the preconditions are for accomplishing tasks, and it r

must perform them in the proper sequence. In the previous

2
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example, if an autonomous vehicle was told to repair the engine

- -: on a jet, it must know that the preconditions for accomplishing

this task are to be at the jet, and to have the necessary tools.

However, simply knowing these preconditions is not enough; it

must also know that the tools must be obtained first. Having

this knowledge available to the vehicle is essential to the

mission planning capability of the autonomous vehicle.

An autonomous vehicle capable of operating in its environ-

ment independent from human intervention must have the ability to

use its resources effectively. A human has the ability to pro-

cess a myriad of information in parallel and utilize this infor-

mation in performing everyday activities. The actual processing

of this information may be done in different parts of the brain;

however, it is made available to other parts if needed. Like- ..-

wise, an autonomous vehicle must process a host of Information

from various sources and use this information to perform its

prescribed mission. The type of information the autonomous

vehicle might process would include: sensor data, route planning

- data, mission planning data, as well as information on the

vehicle's fuel status and maintenance requirements. Assimilating

and controlling the flow of this information is the job of the

operating system, and it is crucial to the mission of the autono-

mous vehicle.

In a multiprocessor autonomous vehicle, direct communication L.

between processors may not be feasible due to design constraints

on available area for bus paths. Furthermore, the complexity of
r

.. .-.. direct processor to processor communication may make future up-

grade of the system extremely difficult. Instead, communication

3



between processors can be accomplished through a shared common ',

memory or blackboard. By using the blackboard approach, system

information can be made available to any processor needing it.

The difficulty with this approach, however, is the requirement to

control accesses to the blackboard. One purpose of this project

is to simulate the processing environment present in an autono-

mous vehicle in an effort to identify a suitable software archi-

tecture that would allow an autonomous vehicle to perform its

mission effectively.

Unlike an operating system for a regular computer, the

operating system in an autonomous vehicle must be able to handle

unforeseen situations. For example, if a certain plan is being

carried out that makes use of the vehicle's sensory capability

(such as sonars) on the left side of its body, and all sensors

Sfail on the left side, then the operating system may construct a

plan to use other available sensors, or to use the sensors on the

right side of its body. To achieve this, the operating system

must be able to infer goals. If in the example above, the

vehicle's available fuel became critically low, it would be

desirable to give maximum attention to planning a route to a

refueling station. Assuming the vehicle were stationary at the

time, it would be unwise to give equal bus time to the other

processors. Instead, effort should go into correcting the situa-

tion and perhaps even shutting down unnecessary processes. The

detection of such a goal might be the job of an execution monitor

who constantly checks on the condition of the vehicle. If a low

. fuel state is detected, this information would be passed to a

4
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projector to determine if the vehicle's current goal could be

achieved and still allow sufficient fuel to reach its refueling

statioa. If the current goal could not be achieved, it should be

abandoned and a new goal of refueling should be established. In

effect, the operating system's flow of control has been altered;

new priorities have been established and previous policies the

system may have had, such as allowing equal bus time, are aban-

* doned. To accomplish this, it will be necessary to integrate the

mission planning mechanism with the overall operating system

- architecture to allow these types of goal inferences.

An independent but important function of the mission

planning problem is the path planning problem. Planning an

optimum route to a destination can be accomplished if the path

planner has at its disposal an accurate representation of its

environment. However, while executing the planned route the

vehicle may encounter dynamic objects or objects that it had no

knowledge of. One strategy might be to simply stop and wait for

- a moving object to cross the path; however, this strategy may not

work in all situations. The moving object may be on a collision

course with the autonomous vehicle, or it may halt directly in

- the planned path and not move again. Allowances must be made for

these situations and the appropriate strategy must be chosen in

order to prevent damage to the vehicle. If the vehicle cannot

* get around the object, then it may have to abandon its mission 1

goal and attempt to accomplish other goals. Strategies such as

these must be made available to the autonomous vehicle so that it

can perform its mission effectively. Selecting and executing the

- appropriate strategy will be a cooperative effort between the

5.:
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operating system and the mission planning mechanism.

Scope

This thesis effort will concentrate on developing an .,,-.,,,

operating system suitable to demonstrate the mission planning and

execution function of an autonomous vehicle. The effort will be

limited to identifying only high-level functions the operating

system must perform, such as handling accesses to a shared common

memory and calling on appropriate specialists.

A mission planner will be developed suitable to demonstrate

the interactions between the operating system and a planner

mechanism. Actual detailed plans will not be developed in an

effort to focus on the concepts involved.

Finally, concepts from a path planning program developed

in a previous thesis effort will be incorporated into the overall

program in order to demonstrate the operating system and mission

planner's capabilities.

Assumptions

This research effort assumes that the autonomous vehicle

will have basic sensory capability in its design. Sensory

mechanisms necessary to detect objects, orient the vehicle, and

* compute distance travelled will be simulated in the software

* algorithm. Furthermore, the autonomous vehicle will be modelled

as a multiprocessor system composed of four microprocessors.

Research work at AFIT in the area of autonomous vehicle design

supports this assumption (3; 12). N

6
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Summary of Current Knowledge

""Researchers in the field of cognitive psychology have stu- %I

died how humans construct plans to accomplish errands. Their

research revealed certain techniques humans use in constructing

plans to accomplish a number of errands during a single day. In

an attempt to emulate human behavior in these situations, they

developed a computer program using the Lisp programming language.

* The algorithm they developed could emulate the behavior of

several of the test subjects (8:2-3). In their model, the plan-

- ning process was composed of the independent and asynchronous

operation of many distinct specialists or knowledge sources.

Each specialist made tentative decisions for incorporation into

an overall plan. These decisions were then stored in a shared
'. . ° . -

common memory, or blackboard, for use by other specialists. The

blackboard was partitioned into different levels with each level

representing conceptually different categories of decisions.

Some of the specialists were not restricted to accesing single

levels of the blackboard. Instead, they could access other

levels and base their decisions on the decisions of other

specialists. Hence, information could be shared and decisions

altered based on new information gained from interacting with

other specialists. This process was termed opportunistic plan-

ning and reflects the techniques humans use in constructing plans

to accomplish everyday activities.

The idea of cooperating specialists was used in Reference

(6) to implement the operating system of an autonomous vehicle.

Their operating system consisted of cooperating expert modules

together with a high-level coordinator that invoked the

oa'
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appropriate expert module based on the current state of the

- robot. Some of the tasks performed by the expert modules

included: error processing, mission planning, and path planning.

In the area of planning, several types of planners have been

developed for domains ranging from game playing to assembly tasks

(4). Of interest to this research effort are the planners that

*have been developed to carry out everyday human tasks. In

particular, Wilensky (15; 16) has studied the relationship

*between planning and understanding in his research in the area of

*natural language text understanding. In problem solving, a

planner is given a goal and must construct a plan to satisfy it.

- In contrast, an understander might need to follow the plans of an

*actor and make inferences about the actor's goals. Similarly, a

- robot may be given several tasks to perform, and it must con-

*struct plans to accomplish these tasks. When to perform these

tasks is a function of the robot's ability to make inferences

based upon conditions in its environment. Likewise, if more than

one robot is present, it may be advantageous to infer what task

the other robot is performing so consideration can be given to

* the changing environment.

Certain portions of the knowledge required to construct

plans and to understand plans can be shared between a planner and

an understander (15:29-40). This knowledge consists of knowledge

about the planning process itself and Wilensky termed it meta-

planning knowledge. He organized this knowledge under four main

principles he termed meta-themes:

1. Don't waste resources

8



2. Achieve as many goals as possible

3. Maximize the value of goals achieved

4. Avoid impossible goals

These themes reflect some of the basic underlying principles

humans use to guide them in constructing plans. For example, the

meta-theme don't waste resources may arise when a person is given

many tasks to perform and only a limited amount of fuel in his

vehicle. The person would then try to plan an optimum course of

action to follow in accomplishing these tasks. If some unfore-

seen event occurs, such as a traffic jam, the person may realize

that he won't be able to accomplish all the assigned tasks.

Therefore, he may use the second meta-theme, achieve as many

goals as possible, in order to abandon certain tasks that he

considers insignificant. These themes serve to guide the

selection of goals, and hence, the appropriate plan. Wilensky

implemented his concepts in a story understanding program known

as PAM. The concepts he developed would be useful in a mission

planner in an autonomous vehicle since the ability to infer goals

and to re-plan actions if necessary is vital in a dynamic

environment such as an aircraft flight line.

Associated with the mission planning function is route plan-

ning. A program was developed by Monaghan (10) that determines

the optimum path between points in a simulated aircraft hangar

environment. The environment was modelled as a two-dimensional

representation of real world edges. A complex configuration

space was derived from this world model and represented the free

space that the autonomous vehicle could move through. Using the

9



configuration space, point-to-point notion was then planned to

the destination. As mentioned earlier, however, all objects in

the environment were stationary; therefore, the robot always had

an accurate world model representation. Nevertheless, the

*program provides the necessary function of route planning, and

unforeseen situations such as moving objects might best be

* performed by the operating system itself.

Current work in the field of autonomous vehicle control

supports much of the approach taken here. However, differences14

- exist in the philosophies of representing knowledge.

Specifically, researchers at Hughes Laboratory have taken the

* approach of representing the knowledge base in the form of a

*production system (9). They categorize the knowledge in an

- autonomous vehicle as being composed of special problem solvers,

scripts, and domain-specific production rules. The special pro-

- blem solvers perform the path planning function mentioned

*earlier. The scripts, on the other hand, are symbolic represen-

tations of stereotypical sequences of events. How to use these

* scripts is encoded in the production system rules in the form of

IF-THEN statements. Therefore, all strategies on how to plan are

grouped together in the production system, unlike the approach

-taken in metaplanning mentioned earlier. The approach they take

* reduces the level of abstractions in the planning process to

basically two levels: find an appropriate production rule, then

- use the scripts encoded in that rule. The approach taken, how-

* ever, is a vast improvement over previous problem-solver based

- systems in that this method is knowledge driven.

10



Approach

The problem of autonomous vehicle planning and navigation is

broken down into three tasks:

1. Operating system development

2. Mission planner development

3. Route planner development,'..

The operating system has the responsibility of controlling

communications between the microprocessors in the vehicle and

invoking appropriate routines. Therefore, the operating system

provides coordination among specialized routines, and as such,

will be developed first to provide the driving mechanism for the

mission and route planner. Specialized routines in the operating

system will be developed to provide necessary functions such as

41 controlling accesses to memory, monitoring the execution of a

planned route, monitoring fuel status, and issuing movement

commands. Implied in this is the development of a blackboard to

provide the means for communication between processes. The par-

titioning of the blackboard will reflect the categories of

decisions made by the specialized routines. For example, an

execution monitor specialist might access the planned-route

partition, as well as the current-state partition in an effort to

determine if the vehicle is on course. The specialists will not

be restricted in their accesses to partitions; however, direct

communication between specialists will be controlled by an

overall scheduler specialist.

Once the operating system has been defined the mission

planner will then be developed. A version of Wilensky's PAM

-. . C. *.--*o



program, known as Micro-PAM, will be expanded and modified to

handle the domain of the autonomous vehicle. Micro-PAM will be

modified to handle multiple tasks and the possible interactions

*between these tasks. Furthermore, in an effort to increase its

efficiency, an indexing scheme will be added to the program in

order to reduce the search time through the rules in its

* knowledge base.

Finally, a simple route planning program will be developed

S in order to demonstrate the concept of planning in a dynamic

environment. Although the primary emphasis of this research

effort is on the interactions between the operating system and

mission planner, a mechanism for generating routes through the

environment is needed. Therefore, a simple world model will be

drived along with pre-planned routes for interfacing with the

LOP overall program.

Equipment Requirements

SAll work will be done on the AFIT VAX 11/780 (SSC) running

under the UNIX operating system. The VAX currently supports the

ROSS programming language and Franz Lisp, which will be used for

-the operating system and planning system design respectively. No

problems are anticipated in integrating the operating system and

planning system since the ROSS language Is compatible with Franz

Lisp. Nevertheless, interface points will be defined in an

- effort to keep the two systems as independent as possible.

* 12



II. Autonomous Vehicle Operating System

Introduction

In the early days of computers, one might have defined an

operating system as the software that controls the hardware.

Today, there is a significant trend for functions to migrate from

software to firmware, or microcode. Thus, a definition of an

operating system today might be the software and firmware that

make the hardware usable. The hardware provides the computing

power while the operating system makes this power available to

the user (1:5).

14.! An operating system is primarily a resource manager, and the

resource it manages is the computer hardware. Some of the tasks

the operating system performs are:

1. Scheduling processor time

2. Scheduling storage access

3. Recovering from errors

4. Facilitating input/output

5. Interfacing users

Most computer users are familiar with the last function

mentioned: interfacing users. The operating system provides a

friendly interface with the actual computer hardware, and most

users today are unaware of the operating system's other

* functions. The other functions, however, are some of the opera-

ting system's most important functions, and the ones that are of

13 p
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most concern to this thesis effort.

The other functions represent low-level tasks that the

operating system must perform in order to make the hardware

usable. Scheduling processor time is an important function in a

multi-user computer environment; it allows many users access to

the computer's main resource -- the processor. Likewise, schedu-

ling the users access to storage devices is equally important in

the multi-user environment because it allows data to be readily

available for the processor's use. Finally, recovering from

errors is a vital function to the smooth operation of the multi-

user computer environment. It frees the human supervisor from

the job of restoring the computer to operational status each time

a tape drive or disk was unavailable to a user. Thus, it allows

*. the supervisor to concentrate on more serious errors, such as t

hardware errors.

As mentioned earlier, these tasks are low-level tasks impor-

tant to the smooth operation of the computer. In an autonomous

vehicle, low-level tasks such as these could be performed by a

conventional operating system. However, with the addition of

intelligence to the vehicle, new functions must be performed that

cannot be handled by a conventional operating system. More

flexibility is required in the operating system in order to

handle situations that may not have been known a priori (11: 3).

Conditions such as hardware errors and unavailable storage de-

vices can be anticipated and allowances can be made. However,

when specialized functions are being performed in an autonomous

vehicle, such as route planning, and a previously unanticipated

14 . . °
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condition in the environment arises, what actions should be

*taken? Should available fuel resources be shared equally among

all on-board devices if the situation is threatening to the

vehicle? Or, should maximum effort be expended in planning

evasive manuevers? If an evasive manuever strategy is decided

upon, attention should be given to the mission planning function,

*and unnecessary on-board equipment should be shut down. Deciding

* what course of action to follow would be the job of an intelli-

gent operating system. The more conventional operating system

could easily handle the error conditions that might arise when it

trys to access equipment that has been shut down. So, what is

needed is a more flexible operating system that can deal with the

specialized intelligence functions in an autonomous vehicle.

The specialized intelligence funtions in an autonomous

vehicle can be broken down into four categories:

I. Mission planning

2. Route planning

3. Execution monitoring

4. Error handling

Each of these categories may have associated with them subspe-

cialties that are vital to the correct operation of other

specialized functions. Nevertheless, there is a need to drive

each of these mechanisms In the proper sequence and not just in a

straight-line fashion. Hence, the need for an intelligent opera-

ting system to control these functions.

The last function performed by a conventional operating

* . system mentioned earlier is communicating with users. An autono-

mous vehicle may need to communicate with a human in order to
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receive new instructions; however, the process is a specialized
-S'

function based on the available I/O devices and language support.

Communication with an autonomous vehicle might be through a cable

data-link between a main-frame computer and the vehicle, or

through an on-board input device such as a keypad (12:8-9).

Various other I/O devices have been explored and future progress

in speech recognition may allow the human supervisor to talk

directly to the autonomous vehicle.

The language used for communication might be a specialized

control language (11:10), or the system might support a natural

language interface. In any case, the mode of communication is a

* function of the design of the autonomous vehicle, and is a spe-

cialized function of the operating system that will not be consi-

dered here; However, the design of the autonomous vehicle is

also important to the other tasks that the operating system

performs. Therefore, vehicle design should be considered in any.7.

operating system implemention. The effort here was to keep the

operating system as general as possible; nevertheless, a model of

an autonomous vehicle was used as a basis for many of the

functions in this operating system.

Autonomous Vehicle Model

To serve as a basis for the operating system functions, the

AFIT Mobile Autonomous Research Robot System (MARRS) was used as

a model. The AFIT robot has been the subject of several thesis

efforts at AFIT and has undergone numerous changes from its basic

configuration as a Heathkit HERO-I robot (3). Many of the

changes have been enhancements of the basic system in order to
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accommodate additional hardware. The available memory has been

expanded in order to provide additional storage space for the

software required to drive the new hardware. Furthermore, the

* original carriage has been enlarged since the hardware enhance-

* ments used up the available space in the basic carriage.

Many types of sensor devices have been proposed and

* implemented on robots in research institutions and industry. The

sensors may perform their functions through mechanical, optical,

acoustic, electric, or magnetic means (11:6-9). Numerous types

of sensor devices are available, and each one provides certain

advantages and disadvantages. Regardless of the type of sensor,

effective use of the sensors is required of an intel1ligent

vehicle in order to accomplish its mission goals. The sensors,

however, should provide the capability to detect obstacles,

orient the vehicle, measure the distance travelled by the

vehicle, and determine when objects have been grasped.

The AFIT MARRS robot has some of these capabilities.L.

* Specifically, the MARRS robot has been modified to include the

* following sensors:

1. Thirty-two Polaroid sonar transducersL

2. Optical shaft encoder subsystem

3. Laser barcode reader

4. Gyro-compass

* These sensors allow the robot to detect objects in the environ-

* ment, locate its position in the environment, and determine its

heading. Therefore, the sonars, optical shaft encoder, and the

* gyro-compass were selected for modelling in this thesis effort

17
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because they represent the minimum sensors required in order to

naviate.In dditonan end-effector sensor was selected for

modelling in order to give the vehicle the capability to deter-

mine when objects have been grasped.

* The MARRS robot is a multiprocessor system based on the

Motorola 6800 family of microprocessors (3:8). A separate

microprocessor controls the various sensors while another

microprocessor acts as the main drive computer. Because the

MARRS robot uses the 6800 family of microprocessors, its memory

addressing capability is very limited. The basic software re-

* quired to support the sensors and the drive mechanisms leave

limited storage space for any elaborate planning and navigation

*software. Therefore, a method is needed to conserve memory space

*and facilitate processor to processor communication. The

approach taken in this thesis effort was to use a shared common

memory, or blackboard, in order to allow processor to processor

communication and minimize duplication of data throughout the

* system.

Intelligent Operating System Tasks

Hayes-Roth (8) has formulated a planning model in an attempt

to emulate human behavior in constructing plans to accomplish

errands. An important concept that arose during their research

*was that of opportunism. Human subjects were given several

* errands to perform and they were to construct a plan to accom-

plish all the errands ina specific amount of time. The errands

consisted of routine activities people perform everyday such as

going to a grocery store or a bank. The subjects were given a

18
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map of a city with the locations of each errand, and the methods

they used to construct their plans was recorded.

The methods the subjects used to begin their task varied.

However, throughout the planning process the subjects used simi-

lar methods to arrive at a solution. A subject may have begun

._ the planning process by making abstract decisions about features

of the plan such as accomplishing all errands in the northwest

part of the city first. While carrying out the errands in that

part of the city, he may notice an opportunity to easily

accomplish another errand that may not have been in the northwest

part of the city. He may then decide to construct a plan around

accomplishing errands that are close to each other, so he may

formulate a plan around clusters of errands. This ability of

c humans to switch from an abstract level of decision making to a

detailed level while constructing plans was the driving force in

the formulation of Hayes-Roth's planning model.

The model they proposed was based on certain features of the

Hearsay-Il system (8:376) such as:

1. Multiple cooperating knowledge sources

2. Opportunistic problem solving behavior

3. Communication via a blackboard

4. Scheduler to control activities

In their model, the planning process was carried out by many

different specialists, or knowledge sources, each making tenta-

tive decisions for incorporation into an overall tentative plan.

-: . The planning activity was controlled by an executive routine that

. scheduled specialists and invoked the appropriate ones based on

19

bobs-

':- - -- - - - - - - - - - - -



-"°I

certain polices governing the overall plan. For example, if the

-'" policy is to construct the most efficient plan, then the execu-

,* tive might schedule the specialist whose job it is to find

errands that are close together. The executive is driven by

policies that the plan must meet, and the planning process is

only stopped once the executive determines that they have been

met.

An executive controller, a blackboard, and planning

specialists are the concepts that are the main influence to this

". thesis effort. The blackboard approach requires the operating

system to arbitrate memory accesses. When is the data in the

blackboard accurate? If the vehicle is in motion, sensor data in

the blackboard may be changing rapidly and might be of limited

c use to a mission planner if the sensors were denied access to the

blackboard. What are the points at which other functions should

* be denied access to the blackboard, and the data in the

blackboard is considered accurate for a particular function?

Arbitrating blackboard accesses based on prevailing conditions is

S-.essential to effective operation of the autonomous vehicle.

Just as the operating system must decide what function

should have access to the blackboard, it must also decide when to

schedule functions. During startup, the mission planner would be

invoked in order to plan the sequence of actions to accomplish

its mission goals. When actions have been planned, the route

planner should be invoked next in order to find an optimum path

to the destination if required. When motion begins, the execu-

tion monitor should be invoked in order to ensure the vehicle is

20
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on course. If the vehicle strays from its assigned course, an

-. error handling function would be invoked in order to correct the

deviation. If a more severe error is detected, such as an

imminent collision, the mission planner would be invoked in order

to select an appropriate avoidance strategy. Scheduling and

invoking the appropriate functions is therefore a required task

of the operating system and must be based on prevailing condi-

tions in the environment as well. .

There are other tasks that the operating system should

perform, such as communicating with the vehicle's conventional

operating system; however, the two tasks discussed previously

have been chosen as basic tasks required to demonstrate the

interactions between the specialized intelligence functions in an

autonomous vehicle. As such, this thesis effort will concentrate

on these two tasks in order to allow the development of a mission

planning system.

N'S
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III. Planning

Introduction

Planning is the process of using a problem solving procedure

to determine a course of action prior to executing those actions.

Failing to plan can lead to less than optimal problem solving,

and in some cases, can preclude ever finding a solution to a
a. '.

problem. This is especially true when certain aspects of a

problem may interact with each other implying there is a required

sequence in which actions are to be performed. If an autonomous

vehicle had the tasks of refueling an aircraft and repairing a

hole in the aircraft's fuel tank, the order in which these tasks

should be performed is clearly important. Repairing the hole in

the fuel tank by using a welding torch could have serious conse-

quences if the autonomous vehicle had just finished refueling the

tank. Each problem may have been solved, but a new problem has

been created from the resulting explosion of the aircraft.

Planning, then, involves knowing how the planner's universe

may change as a result of some action, and how these actions may

interact with other aspects of the plan (13: 249). So, other p

than needing this form of knowledge, the planner must use a

problem solving procedure that can analyze aspects of a plan, and

thus, guide him in selecting the appropriate actions. In compli- L.
-'. - cated problem domains, this is essential since there may be

22
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numerous interactions between goals in the plan, and disastrous

consequences could result from an improper selection of actions.

A method that is used in planning is to decompose the

problem into smaller subproblems (13:248). Each smaller subpro-

blem can then be worked on, and the solutions can be combined to

form an overall solution. Decomposing a problem makes it more

tractable, and it is a method that is widely used in engineering

disciplines. Two approaches to planning that make use of decom-

position in varying degrees will be discussed in order to provide

a foundation for the planner designed in this thesis effort.

Next, an approach used in the problem domain of story

understanding will be discussed since some of the concepts used

in that approach have been incorporated in this thesis effort.

Finally, a brief discussion of system organization will provide a

Ifoundation for the organization adopted here. While much of the

system organization discussion relates to the operating system

design, the operating system itself can be considered a planner,

and as such, the Hayes-Roth (8) model will be examined once

again.

Hierarchical Planning

A hierarchical planner decomposes a problem into a hierarchy

of representations. These representations are an abstraction of

the problem and its subproblems. An example of such a

hierarchical representation is shown in Figure 1 for the problem

of planning a days activities.
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Plan for the day

Morning Lunch Afternoon
Subplan Subplan Subplau -'

Go to Work Eat Write
Subplan Sandwich

Drive Buy Find
Subplan Sandwich Terminal

C

Buy Gas
Subplan

Figure 1. Plan for Days Activities (4:516).

The plan in Figure 1 is shown as a hierarchical structure of

subplans with the specific details on how to accomplish the

subplans left out. Instead, the subplans represent an

abstraction of the activity to be performed with each lower level

being abstractions of the details to accomplish the higher le-

vels. For example, under the morning subplan, the plan for going

24
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to work involves buying gas and driving. But, buying gas re-

quires having money; therefore, a subplan for getting cash is

required immediately under the buy gas subplan. Getting cash,

however, is an abstraction of the solution, so the next level

under that might be a go to the bank subplan. In each case

specific details have been left out. Going to the bank involves

walking to the car, getting into the car, driving to the bank,

and so on.

The advantage of leaving the details out initially is that

critical subgoals of a problem can be considered first. By

S.considering the critical subgoals first, the details can be added

in later as the general plan is formulated. This helps in redu-

cing the required search of the problem space by developing the

plan at a level at which it is not computationally overwhelming

- .9 (4: 517).

For a very complicated problem, the planner could easily get

bogged down if it tries to consider all possible goals in the

problem space at once. Trying to formulate a plan by first

considering a goal of opening the car door may or may not lead to

an acceptable overall plan. Instead, dealing with abstractions

of the problem helps to guide the search and reduce the ineffi-

ciencies that would result from starting at a high level of

detail.

Besides trying to limit the search of the problem space,

there is the problem of interacting goals. The order in which

actions are to be performed is sometimes important, as in the
i.'

case of the autonomous vehicle with the tasks of repairing and

r. refueling the aircraft's fuel tank. Two techniques have been
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used to deal with the problem of interacting goals.

The first technique relies on the assumption that goals are
I

independent and can be achieved sequentially in any order. The

planner arbitrarily orders the goals and then goes back and tries

to repair the plan if goal conflicts are discovered. This method

is useful if there is no a priori knowledge about the proper

ordering of goals, and it helps reduce the combinatorial explo-

* sion of trying to initially determine the proper order of
L;

numerous goals (4: 520).

The planner using this technique for the example of the

autonomous vehicle tasks of repairing and refueling an aircraft's

fuel tank might start the planning process by using an arbitrary

ordering of the tasks. If it starts out by planning to refuel

the aircraft first, later on while developing the plan to repair "

the fuel tank, it may discover that welding the fuel tank con-

flicts with a full fuel tank. To repair Lhe plan, the planner

would reorder the goals by doing the repair fuel tank plan prior

to refueling.

In the previous example, complete plans were developed

separately for the two tasks; however, in some cases it may be

better to intertwine plans. This type of planning is known as

non-linear planning, and it is the second method for dealing with

interacting goals (13:267). A non-linear planner would not

arbitrarily order goals. Instead, plans might be developed

in parallel, and the interactions of goals analyzed as the

p planning proceeds. Figure 2 shows what a non-linear planner

might do for the two tasks of repair and refuel aircraft's fuel
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Refuel rRepair
Aircraft Fuel Tank

Ge se Get Torch

Move Hov
to Aircraft to Aircraft

Fill Tank Weld Hole

Combine Plans

Get Hose

Get Torch]

Move
to Aircraft

[Weld Hole]

ill Tank]

Figure 2. Non-linear Planning.
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tank.

.. :.- Initially, no order of goals is assumed so the plannin-

proceeds in parallel, and at each step a set of critics examine

the plan for interacting goals. The critic notices that a move

*' to the aircraft is called for in both plans, so this step is

combined so that only one move to the aircraft is performed. The 'a

vehicle would get the hose first, then get the torch, and finally

* move to the aircraft. At the last step of the plan, the critic

notices that welding the goal conflicts with a full fuel tank, so

it proposes to do the welding prior to filling the fuel tank.

- Now this may not be a safe procedure, but it illustrates the

concept of non-linear planning. By using a set of critics to

examine goal preconditions, intertwining plans can be developed

for the conjunctive tasks of refuel and repair fuel tank.

'9 Figure 2 also illustrates the second method of plan

* construction: nonhierarchical planning. The problem of

interacting goals is common to both types of planners; hence, the

m discussion here also applies to nonhierarchical planning.

*" Nonhierarchical Planning

A second method for constructing plans uses a

nonhierarchical approach. The term nonhierarchical is misleading

in that it implies no decomposition is used in the plan construc-

tion. This is not the case; both hierarchical and

nonhierarchical planning use a hierarchy of representations in

- plan construction. The difference is in the level of

representation used in the decomposition. A hierarchical planner

generates a plan structure in which the highest levels are very

p 28
7 ... o-...



* . - -. . .. t. I.- *0 - - . a a

sketchy, and the lower levels are very detailed. A C

nonhierarchical planner, on the other hand, does not distinguish

between aspects that are critical to the success of a plan, and

those that are only details (4:517). Figure 2 illustrates a

nonhierarchical plan and the drawbacks associated with such

planning.

Each step in the plan shown in Figure 2 is really a detail

that could be filled in later once policies governing the plan

have been handled. For example, it might have been better to

start the planning process at a higher level of abstraction, such

as considering the safety aspects first. The planner would have

established a subgoal of being safe, and lower level subgoals

would have arisen hinged on this policy of being safe. Potential

lower level subgoals might have been related to eliminating

(Ai dangerous conditions such as fuel vapors and sparks. Proceeding

from this level of abstraction would have guided the search for a '-.

solution and helped to reduce the possibility of having to reor-

der goals. Goal interactions may still occur; however, the

critical aspects of the plan are considered first.

Nonhierarchical planning, therefore, is not of much benefit

* in complicated problem domains where numerous goal interactions

may occur. The planner gets bogged down in sometimes futile

searches of the problem space in an effort to consider all goals

. at only one level of abstraction, rather than a hierarchy of

abstractions (13:271). Nonhierarchical planning, however, was

used in some of the earliest planners, and it is mentioned here

to serve as a contrast to hierarchical planning.

29



Metaplanning

Planning, therefore, is the process of deciding on a course

of action. There is a richer knowledge, however, that human

planners use in this process that has not been discussed. What

constitutes a good plan, and what are some of the techniques

human planners use in constructing good plans? This type of

knowledge is knowledge about the planning process itself, and

Wilensky (15; 16) used this knowledge, known as meta-knowledge,

in his study of natural language text understanding.

Wilensky used as a basic premise for his research the fact

that in order to understand stories, the understander must have

knowledge about the planning process. As an example, consider

the following story:

John was driving to the store when he noticed a

tornado coming his way. He immediately turned the

car around and drove back home.

A possible explanation for John's actions might be that he consi-

ders preserving his life more important than what is ever at the

store. But, what is needed to arrive at this explanation? The

answer is in how humans formulate plans.

From the first statement, we can infer that John's goal was

to be at the store, and his plan to achieve that goal was to

drive to the store. From the second statement, we can infer that

* John's goal was to be at home, and his plan was to drive home.

* This, however, does not explain John's actions. We also need to

* know that tornadoes can be life threatening, and humans have a

desire to avoid such situations. With this knowledge, added to
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the knowledge that humans use to construct plans, we can arrive

at the above mentioned explanation.I

Figure 3 illustrates the planning process John may have used

*in deciding what to do in his situation. He had two goals, to

preserve his life, and to be at the store. He realized that

these two goals were in conflict with each other, so he used his

knowledge about planning to resolve this conflict. An acceptable

Pres erveBeaGol
LifethStr

Conflct }Meta-goal

Figure 3. Meta-planning Process.
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procedure to use in situations where conflicting goals occur is (.

to abandon the goal that is considered least important. John

used this planning knowledge to abandon the goal of being at the

store. With only one goal left, he constructed a plan of driving

home to achieve that goal.

Now, with this added knowledge about how humans plan, we can

arrive at the explanation mentioned previously. We needed to

know that humans sometimes abandon goals in favor of more impor-

tant ones. This knowledge is used in many types of problem

domains, and it is not just applicable to the above story. Like-

wise, a good planner must have this knowledge available in order

to construct acceptable plans. The knowledge, therefore, can be

used by both an understander and a planner if it is in a form

that can be shared (16:31).

Wilensky organized this knowledge around four themes he

called meta-themes (16:31). Each meta-theme gives rise to

goals, known as meta-goals, for which meta-plans might be appli-

cable. The four themes are:

1. Don't waste resourses

2. Achieve as many goals as possible

3. Maximize the value of goals achieved

4. Avoid impossible goals

John, in the previous example, realized that he had conflicting

goals, so the meta-theme maximize the value of goals achieved

came into play. The meta-theme intiated the meta-goal of

choosing the most valuable scenario. A possible meta-plan to
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achieve this meta-goal is to simulate the outcome of each

conflicting goal and then select the most valuable outcome (15:

72; 16: 209-211). John simulated the outcome of preserving his

life and decided this was the most valuable scenario as compared

to being at the store. .4

Meta-themes, which give rise to meta-goals and meta-plans,

can be used by both an understander and a planner. Since a truly

intelligent autonomous vehicle will need to understand, as well

as plan in any complex environment, it is these concepts that are

most appropriate here. However, in order to use these concepts,

the planner must be able to detect that it has goals, as well as

generate plans to accomplish them. Wilensky proposed a planner

based on the following elements:

1. Goal detector

2. Plan generator

3. Executor

The goal detector is the inferencing mechanism that passes the

goals to the plan generator. The executor simply carries out the

plans proposed and detects any errors in the plans (16: 215).

We now have the elements an autonomous vehicle can use to

operate in a complex environment. The inferencing mechanism can

* use knowledge about the planning process to understand situations

that may occur in the vehicle's assigned tasks, especially if it

is working in conjunction with other autonomous vehicles. But,

by providing it with the capability to understand its environ-

* ment, the planning process can be guided more intelligently.

What is needed now is a way to organize and direct these various
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elements of the planner.

System Organization

One of the simplest ways to organize a planning system might

- be to write rules containing all the knowledge, and then let the

planner use those rules to f ind a solution. In a complex domain,

* however, the number of rules can be large, and the system might

* become bogged down in searching through the knowledge base.

Therefore, an organization scheme is needed that splits up theL

knowledge in a large domain into separate modules. The black-

* board approach is one such scheme, and it was discussed earlier

in Chapter II in the context of an operating system. It is now I

- looked at in a little more detail in the context of organizing

and controlling the activities in the planning system.

As mentioned earlier, the blackboard provides a means of

communication between knowledge specialists in a planning system.

detector, plan generator, and executor, will all need to be

controlled, and the knowledge they use can be shared. The goal

- detector can use knowledge about plans to infer goals, while the

plan generator can use the knowledge to construct the plans.

Likewise, the executor can use the knowledge to simulate what

* might happen carrying out the plans in its effort to detect

* errors. So, the blackboard can be used for communication, but the

*three elements must still be invoked at the proper time. Hence, '

* the need once again for the operating system to direct activi-

*. ties.

Hayes-Roth's planning model used an executive controller to
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direct activities in the planner (8:380). The knowledge

specialists in the Hayes-Roth model had associated with them a
I

set of triggers that specified conditions under which they should

be activated. When conditions were favorable for a knowledge

specialist, they were added to an agenda list of knowledge spe-

" cialists to be invoked. Based on policies about the overall

plan, knowledge sources were scheduled depending on which

knowledge specialist had the ability to deal with current poli-

cies. Once a schedule was decided upon, the knowledge sources on

the agenda were invoked, or fired, and they used knowledge in the

blackboard to formulate hypotheses. By formulating hypotheses rs..

*" and writing them to the blackboard, the knowledge specialists

" might alter conditions; thus, other knowledge specialists might

trigger and be added to the agenda list (8:380; 13:281).

In this manner, activities in the planning mechanism are

controlled based on prevailing policies. The planner design

discussed previously can likewise be directed in its planning ..L

process. The goal detector might work in conjunction with an

" execution monitor to interpret conditions in the vehicle's

environment. Goals that the detector generates might trigger the

planning generator and cause it to be added to an agenda. The

goals may not always trigger the plan generator, but they could

trigger another knowledge specialist such as an error handler.

Likewise, the plan generator might trigger an executor as a

result of the type of plan generated. If the plan involves a

certain amount of risk, it might be wise for an executor to

simulate the plan and detect unwanted occurrences. Nevertheless,
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the activities are directed by the operating system based upon

the vehicle's mission and current conditions in the environment. 6
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IV. Operating System Design

Introduction

The factor influencing the design criteria for the

* intelligent operating system was the need to control blackboard

accesses and schedule appropriate knowledge sources. Underlying[

* these two functions is the relationship between a mission

planning mechanism and the operating system. The two are not

totally independent. As mentioned in the discussion on planning,h

* there Is a need for a goal detector and executor, as well as a plan

*generator. Just as the duties of planning and understanding can

be shared by one mechanism, so can operating system, goal

detection, and executor tasks be shared by one mechanism.

A natural level at which to detect goals is at the operating

system level. Since the operating system is essentially an

interface between the real world and the computing environment,

the interpretation of sensory information at this level can be

readily transformed into appropriate goals for a plan generator.

Likewise, since it is the responsibility of the operating system

to carry out plans generated by the planner, It is appropriate to

place the tasks of executor at the operating system level to

detect any errors in the proposed plan. Once again a

relationship exists between two tasks: the executor function

requires the ability to detect goals. Therefore, added support

is given to the decision to group these functions at the
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operating system level.

There are further arguments for placing these two tasks at

the operating system level other than their inherent relation-

ship. As discussed in Chapter III, the function of the executor

is to carry out the plans and detect any errors in the proposed

plans. This is the concept of plan projection that Wilensky b

proposed for his planning mechanism (15:17; 16:218). Since it

is the primary task of the operating system to actually carry out

the proposed plans, the function of plan projection can be

performed at this level through simulation. Prior to running

such a simulation, the current state of all resources would need

to be saved so that the simulation would not affect vital infor-

mation. By using the operating system for plan projection, the

- complexity of the planning mechanism is reduced by eliminating

the requirement to duplicate operating system functions at the

planning level.

Hence, with these additional tasks the design criteria is

formulated based upon the relationship between the operating

system and planning mechanism. The tasks to be performed by the

operating system are:

1. Controlling accesses to the blackboard

2. Scheduling knowledge sources

3. Performing goal detection

4. Performing plan projection

The task of goal detection was listed separately rather than

grouped with plan projection since this task must be performed

when the vehicle is actually carrying out plans as well as when
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it is simulating plans. Thus, it is not a duty that will be

performed solely during plan projection.

The autonomous vehicle model discussed in Chapter II re-

quires the ability to simulate a multiprocessor environment with

numerous knowledge specialists communicating via a blackboard.

The asynchronous nature of this computing environment influenced

the selection of the programming language for the operating

system. The ability to simulate knowledge specialists, as well

as time progression, were criteria for language selection. The

time constraints on this thesis effort would have precluded any

* development of a programming environment for the operating system

in addition to implementing a planning mechanism. However, a

", suitable language exists that meets the requirements of this

thesis.

The ROSS Language

Object oriented programming languages enforce a message

passing style of programming. A program written in this type of

language is characterized by a set of objects, or actors, that

interact with one another by passing messages. The actors have

associated with them a set of attributes and message templates

that invoke a behavior whenever a message is received that

matches a template. The behaviors may be an explicit computation

or they may involve passing messages to other actors. In any

case, this style of computation is suited to simulations in

domains that involve autonomous interacting components.

The ROSS programming language is an object oriented language
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whereby processing is done through means of message passing among

objects or actors. The ROSS language is ideal for simulating

processes in dynamic environments where situations occur in an

asynchronous fashion; furthermore, it provides a facility to simu-

late time, and hence, a means to simulate parallel processes.

In this project, the parallel processes are described as a

collection of actors in the ROSS language. Each actor has asso-

ciated with it a certain behavior, so that when a particular

message is received, it will perform some function or ask someone

else to perform a function. The actors can be considered autono-

mous processes, and therefore can be used to simulate individual

microprocessors in a multiprocessor computing environment.

Actors are created in ROSS by an explicit call to a built-in

ROSS actor. So, if we had a need for a robot actor, then the

following ROSS command would result in a robot actor being

created:

(ask something create generic robot)

The actor "something" is the built-in ROSS actor that is present

in the ROSS environment at invocation. The preceeding command

has now created a robot actor that can be programmed to exhibit

certain behaviors when receiving messages. An example behavior 2"

for the robot actor might be:

(ask robot when receiving (jump up and down)
(tell user I can't do that))

I * So, when the robot actor receives a message telling him to jump

up and down, his reaction is to send a message to the user actor
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telling him he can't do that. Likewise, the user actor might

have a message template for this situation that causes him to

I exhibit a certain type of behavior when he is told someone can't

* carry out a command.

The ROSS language also provides a facility to allow actor's -.

behaviors to be planned. A planned action can be triggered

corresponding to a certain time step in the simulation. Thus,

* events can be triggered that are not the result of receiving a

Imessage from another actor. This capability is a conivenient way

* to simulate the actions of a microprocessor that is interfaced to

a real world dynamic environment. The computations it performs

are due to external inputs and are independent of events in the

overall computing environment. Indeed, this facility is

desirable during plan projection in order to provide a more

S ~ thorough analysis of proposed plans. This facility can be used

to simulate unexpected occurrences during plan execution in order

* to investigate the existence of alternative plan scenarios.

* Planned actions such as a course deviation during motion simula-

tion may have the effect of using up surplus fuel on the autono-

mous vehicle, and thus necessitate a refueling stop prior to

carrying out any of the assigned tasks. By simulating

*occurrences such as these, a more efficient plan could be

developed taking into account the likelihood of unplanned events

occurring. Thus, if course deviations will adversely affect the

vehicle's fuel status, a plan could be generated that would

involve refueling the vehicle prior to beginning other tasks. In

* this manner, the need to suspend a current task during plan

* execution is eliminated during plan projection by reordering the
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tasks.

These characteristics of the ROSS language were used in both

the design of the operating system and the planning mechanism.

The planning mechanism itself was considered a separate actor .

that was invoked and guided by the operating system. However, a

different approach was taken in the design of the planning

system's architecture in that the internal controlling mechanisms

did not rely on message passing. The interface between the

operating system and planning mechanism, however, does rely on

message passing. Hence, a discussion of the operating system

program structure is vital to understanding the planner.

The Program Structure

Figure 4 shows a block diagram of the program structure.

~ The autonomous vehicle is modelled as a multiprocessor system

using a shared common memory, or blackboard, for communication

between processors. Four processors are modelled: a main

processor, and three sensor processors.

The main processor controls accesses to memory and invokes

routines to monitor route execution, plan mission tasks, plan

: routes, etc. Three sensor processors provide heading informa-

tion, sonar information, and distance travelled information.

The Main Processor. As mentioned earlier, the main

processor controls accesses to memory and is responsible for

invoking appropriate routines. The main processor, shown in

Figure 5, is modelled in the ROSS language as the following
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collection of actors:

1. Scheduler

2. Execution

3. Math

4. Errorhandler

5. Motor

6. Arm

7. Route-planner

8. Mission-planner

The scheduler actor is the main actor and is responsible for

controlling accesses to memory and updating the clock during the

simulation. The scheduler acts as the top level In the overall

operating system whose job it is to handle requests for bus

access and to ensure that appropriate routines are invoked. It

ensures that equal access to the bus is given to each processor

during a simulation.

At simulation startup, the scheduler directs the mission

planner to formulate a plan based on a certain policy. Once a

plan has been created, the scheduler then begins passing messages

to the appropriate actors in order to simulate carrying out the

plan. Messages are passed based upon an agenda created by the

mission planner. The agenda is a list of messages to the actors

most capable of carrying out the task. In this manner, the

control flow has been initially specified by the mission planner;

however, the scheduler has ultimate authority in deciding if
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additional actors are required to perform a task.

If a particular actor is unable to carry out a task, then

the scheduler detects the type of error involved and modifies, if

necessary, the current planning policy and directs the planner toe"

replan a task. Thus, the job of goal detection is performed by

the scheduler based upon messages passed from other actors.

When the scheduler detects a task failure, the current

agenda is suspended while a new plan is formulated to handle the

*error condition. Therefore, it is not necessary to start the

* simulation all over again, but instead action can resume at the

point that task failure occurred. Furthermore, any unusual i.A

operations required, such as saving the current state data, are

suggested by the mission planner during plan generation based

upon the type of task failure. Thus, a degree of flexibility is

incorporated in the operating system by sharing the duties of

* program control flow with the mission planner.

The execution actor is responsible for monitoring the motion

*of the autonomous vehicle. Prior to a motion simulation, the

execution actor is called by the scheduler to determine if the

autonomous vehicle is at the proper coordinates and the proper

heading. The execution actor then notifies the scheduler if the

autonomous vehicle is not in the proper location or heading.

Otherwise, the execution actor will report that no error exists,

* and the scheduler will then start the motion simulation.

During the motion simulation, the execution actor is invoked

by the scheduler each time the blackboard is updated. The execu-

tion actor checks to see if the autonomous vehicle is on course

45

A . '4* 4... 4. .C3*****4 .-... : . .-.



by comparing the current heading of the vehicle with the planned L-L

-..- heading. If any course deviations are detected, they are

reported immediately to the scheduler. Finally, the execution

actor updates the current coordinates of the vehicle by using the

math actor to perform the necessary computations.

The math actor uses information in the blackboard to deter-

mine the current location of the vehicle. It takes the

coordinates of the start of the current route segment, along with

the distance travelled and current heading, and computes the new

location of the vehicle. This information is then stored in the

blackboard and control is passed back to the execution actor for

further processing. Although this computation could have easily

been done by the execution actor, future enhancements of the

system are expected to require more extensive computations;

therefore, this computation was given to a separate actor in

order to make upgrade easier.

If a course deviation is reported by the execution actor,

the scheduler takes immediate action by invoking the errorhandler

actor. The errorhandler's job is to compute a new course heading

based upon the planned heading stored in the blackboard. The

errorhandler computes the proper heading and then replaces the

old value in the planned route segments with the new value. The

errorhandler then determines the amount of turn required to

reorient the vehicle and then passes this information back to the

scheduler for processing.

A separate actor called the motor was created to simulate

actual movement of the vehicle. The motor actor processes two

types of commands from the scheduler: a turn command, and a move

46

. ..- ]



forward command. If the motor actor receives a turn command, it

tells the sensor actor to increment or decrement its heading the

appropriate amount. Likewise, if it receives a move forward

command it tells the sensor actor to increment its distance

travelled attribute the appropriate amount. In this way,

- changing sensor readings due to movement of the vehicle are

simulated. Furthermore, the motor actor decrements the amount of

available fuel on the vehicle in order to simulate energy expen-

diture with each movement command. For the purposes of this

project, however, the motor actor is not considered a part of the

main processor, but instead represents the actual drive mechanism

on the autonomous vehicle.

The arm actor represents the autonomous vehicle's end

effector. Its primary function is to update the blackboard on

the current state of the end effector. For example, if the actor

receives a command to extend the arm to a certain x and y

coordinate, the arm actor first checks the blackboard to

determine if the arm is already extended, and if so, where. If

the actor is capable of performing the task, it updates the

blackboard based upon the command it received. Therefore,

impossible goals can be detected by the arm actor by comparing

the received commands with the current state stored in the

blackboard. Hence, error conditions, such as trying to grasp an y
object when an object is already being held, can be detected.

The route-planner actor is an attempt to emulate the actions

of a route planning mechanism. It in no way approaches the

complexity of a required route planner, but instead was created
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in an effort to provide basic route information. The actor

merely retrieves a stored route based upon a message detailing

the start of the route and the goal. It has none of the

flexibility exihibited in Monaghan's (10) implementation in that

it cannot generate routes from arbitrary starting locations. All

routes are preplanned and stored by the user in a primitive world

*model; the route actor merely retrieves the appropriate route.4'

* This type of implementation does put constraints on the overall

planning mechanism in that it limits the type of movement

a all owed. However, the implementation was sufficient to

* demonstrate the other key mechanisms, and as such, provides a

high level look at the type of interfacing between the operating

system, mission planner, and route planner.

The route actor can receive two types of messages. It can

be told to plan a route from the current location to a specific

-goal location, or it can be told to plan a route from a specific

*start location to a specific goal location. The two situations

* were selected based upon the way the mission planner formulates

* its plans and they will be covered in more detail in Chapter V.

* If the route planner is to plan a route f rom the current location

to a specific goal location, it first must determine its current

*location. The route planner does this by checking the blackboard

*to find the current state of the vehicle. Once it knows its

* current location, It uses this information along with the goal

location to satisfy conditional statements. If a route exists,

* then it is stored in the blackboard, otherwise a task failure is

reported. The second type of message Is handled in much the same

*way by the route planner except there is no need to initially
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check the blackboard prior to searching the route database.

* "Obviously, this type of implementation can lead to a large

database for even a small world model. The number of routes

required to handle all possibilities in an environment with only

5 objects is 20 routes, and in general for an environment

with n objects, n(n-1) routes are required. Again, this only

allows direct travel between objects. The available routes in " :1

this program will be looked at in the discussion of the world

model.

The final actor grouped under the heading of main processor

is the mission-planner actor. The mission-planner actor is more

of an interface between the ROSS environment and the planning

mechanism, and it merely consists of one message template. The

c mission-planner is invoked by the scheduler with a command

directing it to plan for the current policy in the blackboard.

The mission-planner actor then retrieves the current policy from

the blackboard and passes it to the planning mechanism. Once the

planner has finished its task, it then stores the results in the

blackboard under the agenda attribute. Control is then returned

to the scheduler and processing of the agenda begins in the plan

projection phase.

The Sensor Processors. The sensor processors are shown in

Figure 6 as three actors which interact with the scheduler,

motor, and blackboard. The sensors modelled are: a gyro-compass,

three sonars, and an optical shaft encoder. ,",
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Figure 6. Communication Among Sensor Actors.

The gyro actor provides the vehicle with heading information

which it stores in the blackboard for use by other routines in

the system. The sonars provide object detection and ranging

information for use by an object avoidance algorithm. Currently,

the sonar information is not used in the program; however, future '

upgrades of the program involving a more elaborate world model H
description will make use of this information. Finally, the

optical shaft encoder provides distance travelled Information for

use in computing the current coordinates of the vehicle. 1-.

The actors write to the blackboard by first issuing a re-

quest to the scheduler for access to the bus. When access is

given, the actor writes to the blackboard and then notifies the

scheduler when it is done. Each remaining actor repeats the
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" -- process until all sensor actors have written to the blackboard.

When this operation is completed, the scheduler then regains

-. control of the bus and invokes other actors to process the new

information.

The Blackboard. The blackboard, shown in Figure 7, is a

collection of actors which simulates a partitioned shared common

memory allowing the main processor actors access to vital infor-

mation. The blackboard contains time varying and static data

that allows the main processor actors to monitor the state of the

vehicle while it is in motion or stationary. This technique

reduces the need for the main processor actors to directly query -

separate sensor processors for their information, thus reducing

circuit complexity by using one clearinghouse for information.

The blackboard implemented contains the minimal amount of infor-

mation necessary to allow the vehicle to navigate through its

environment. Subsequent upgrades of this system will incorporate

the planning knowledge in the blackboard, but for the present

implementation only data useful for navigation and execution

monitoring is contained in the blackboard. However, a first step

has been taken in this direction with the agenda and plan policy

partitions.

The first partition in the blackboard hierarchy is the

agenda actor. The agenda actor has an agenda-list attribute that

contains a series of messages generated by the mission planner.

The agenda-list functions in much the same fashion as a stack -

with messages being executed and then deleted from the top of the

stack. The agenda-list is added to the blackboard by the mission
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Figure 7. Blackboard Partitions.

planner and is read from the black ard by the scheduler. This

technique is similar to the one used in the Hayes-Roth (8) oppor-

tunistic planning model with the messages representing

"" knowledge specialists or actors most appropriate to perform some

task.

Another similarity to the Hayes-Roth model is seen in the
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policy partition. This partition stores information concerning

desirable attributes of a plan. The scheduler formulates its

policy based on external inputs from a supervisor, or based on

current conditions in the vehicle's environment. The scheduler

then stores this policy in the blackboard and invokes the mission

planner actor. The mission planner then tries to formulate a

plan based on the current policy in the blackboard. Future

upgrades of the system would incorporate the mission planner's

knowledge base about polices in this partition.

The task-error partition contains information concerning

tasks or actions that have not succeeded. So for example, if

during plan projection the operating system discovers that a

certain item crucial to the outcome of a plan is not available, a

pointer to the failed planned would be stored in this partition.

Thus, the scheduler could then access this partition and use the

information while formulating a new plan policy.

The suspend-state partition contains information about the

vehicle's last location prior to suspending a task. Therefore,

if there is a need to stop in the middle of a task and start a *

new task, the vehicle can resume the old task at the point at

which it left off upon completion of the new task. The suspend-

state actor only need contain information about the location

since the mission planner can direct the scheduler on how to

recover any other information it may need. .

The idea of suspending action and taking up a new task was

once again influenced by the Hayes-Roth model of opportunistic

planning in which a subject might discover an opportunity to

perform a more important task while in the act of performing a
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separate task. Thus, the vehicle might "realize" an opportunity

to throw a switch that is near its current location, and hence

accomplish a task that is not related to the plan in progress. An

4

example such as this requires a much more sophisticated world

model then the one implemented here, but it helps clarify the

reasoning behind the partition.

The current-state actor stores information on the current . -

condition of the vehicle such as its present location and avail-

able fuel. The present location of the vehicle is stored in x

and y coordinate values under the attribute "coordinates," and

the location of the vehicle is stored under the attribute "loca-

tion". The amount of available fuel on the vehicle is stored

under the attribute "resources," and it is updated each time the

motor actor is issued a move command. The gyro-state, sonar-

state, and encoder-state actors are locations where the

corresponding sensor actors store their readings. Finally, the

route actor is used to store data on the planned route of the

vehicle. The planned route is stored as an A-list with each

member of the list corresponding to a segment of the overall

route. The planned route was stored in this manner to facilitate

upgrade of the system to include objects in the environment.

Since the objects would be used as turning points, each route

segment indicates a portion of the path where an object is

expected at the end of the segment. Also included as an attri-

bute field of the route a. tor is the goal-state. The goal-state

is the end point of the planned route and is provided separately

in the event the planned route is altered.
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The World Model

The world model implemented in the program was sufficient to

demonstrate the concept of an operating system and mission plan-

ning mechanism working in conjunction. The vehicle's environ-

ment, shown in Figure 8, is modelled in a cartesian coordinate I.-

plane with eight objects identified by their x and y values. No

attempt was made to model the objects in space, instead they are

just considered points in the plane. A route between two objects

is broken down into segments of unity distance and stored in an

association list (A-list) with information on the route segment

number, starting coordinates of the segment, length of the seg-

ment, and the heading. The format in a Lisp construct is as

follows:

(route segment ((coordinates) length heading))

For example, a route between the base and the workbench might

follow the coordinates: (0 0), (0 1), (0 2), (1 2), and (2 2).

This route would be represented in an A-list as follows:

(setq *base-to-workbench*
0((0 ((0 0) 1 90)) (1 ((0 1) 1 90))

(2 ((0 2) 1 0)) (3 ((1 2) 1 0))))

Route segment zero is indicated by the first number followed by

its starting coordinates, length of the vector, and heading. The

route described by the above construct is depicted in Figure 9.

As mentioned earlier, an environment containing n objects

would require n(n-1) route descriptions to handle all
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possibilities for this type of explicit encoding. Thus, fifty-

six routes would need to be stored in the database for this world

model in order to provide access to all objects from any one

, object. However, only a small subset of these possibilities was

selected in order to demonstrate carrying out four tasks. The

routes encoded in the database are:

1. Base to workbench

2. Base to filling station .

3. Workbench to aircraft

4. Aircraft to workbench

5. Workbench to filling station

6. Filling station to filling station 2

7. Filling station to robot refueling station

8. Robot refueling station to filling station

9. Workbench to sensors

10. Sensors to supply room

11. Supply room to workbench

12. Sensors to base

13. Aircraft to base

The routes were sufficient to demonstrate executing a series of

plans and returning to the base location. Furthermore, an object

map function provided the operating system with the ability to

determine its current location based on the present x and y

. coordinate values. So, for example if the present x and y coor-

dinates were 2.0 and 2.0, then the object map function would

return the value "workbench". In this manner, a literal value as
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well as a numeric value characterizes the description of the ..-

" vehicle's current location. This method enables the formulation

of message patterns to the route actor that are easier for the

programmer to understand, and hence they increase the

understandability of the ROSS code.

.. o
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V. Planning System Design

Introduction

The top-down approach in problem solving has long been in

*favor in the engineering and computer science disciplines. For

any complicated problem domain, the approach makes the problem

* more tractable by decomposing it into smaller subproblems.

However, many times it is more beneficial to combine a bottom-up

- with a top-down approach in the problem solving process. By

considering lower-level details in the design process, faulty

* reasoning or overly optimistic requirements can be eliminated

early in the planning phase. Thus, a requirement to design a

* computational device with a certain clock speed might be relaxed

*after consideration of the available chip technology. Indeed, in

many instances this top-down and bottom-up approach is an itera-

* tive process that may be repeated many times throughout the

project's life cycle.

As discussed in Chapter III, humans use this method regular-

ly in planning for a day's activities. They are flexible in that

they can plan at a high level of abstraction while considering

lower level details. Simulating this method In software is

difficult at best, but it is crucial to providing an autonomous

vehicle with the capability to work in a dynamic environment.

Strictly adhering to the hierarchical planning approach discussed

in Chapter III may lead to a very eff icient plan; however, it may
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also lead to repeated backtracking from the implementation level.

' .f> The vehicle may have decided to construct a plan that involves

using a particular object only to discover late in the planning

phase that object is unavailable. Thus, it has to backtrack to

the point at which it made that decision and replan with a new

object. It can be argued, however, that a good hierarchical

planner would not even consider deciding to use a particular

object until it had formulated a very general plan. This is

true; however, like the human planner, knowledge of lower level

details can help reduce the planning time. Thus, the vehicle may

be trying to formulate a plan to refuel an aircraft only to find

there is no more fuel or all the nozzles are in use. Its

knowledge of the state of the world model can be used in

formulating the hierarchical plan.

The planning system described in this Chapter incorporates

these concepts. It formulates plans using a hierarchy of repre-

sentations combined with the detailed knowledge of the state of

the world. Thus, the planning process would cease early on if no

fuel was available, and instead, efforts would go into obtaining

. more fuel before planning for the original task resumes.

So far, attention has been focused on the higher levels in

the hierarchy of the planning process and little mention has been

given to the lower levels. In many cases, these lower level

details are actions that occur frequently in a variety of

different tasks. A vehicle may be required to use its arm in

refueling an aircraft as well as in repairing the aircraft.

* . Should it have to plan each time it is required to move its arm,

or can this action be pre-planned and available at all times?
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Humans learn to walk at an early age and thereafter never have to

give conscious consideration to the act again. It would be an

incredible burden if a person had to plan his motions each time

he had to walk. Likewise, an autonomous vehicle would be

needlessly burdened with the task of planning each time it had to

- use its arm. Instead, these plans can be formulated in advance

"4 and stored in a database where they are available when needed.

This type of knowledge structure is known as a script, and it is

useful in describing common sequences of events (13: 203).

Moreover, it has the additional advantage of being declarative in

nature: the knowledge is explicit and need only be stored once.

This is in agreement with the knowledge structure adopted for the

more general planning and meta-planning rules. The knowledge

structure is explicitly encoded as a static collection of facts

that can be used both in understanding and planning.

There are several declarative mechanisms for representing

knowledge and each have an advantage in a particular domain. In

Wilensky's work on meta-planning, he was concerned with the

domain of natural language text understanding. The influence of

his work on this thesis has led to the adoption of a common

knowledge representation. Furthermore, the choice of representa-

tion Wilensky used provides a useful structure for any natural

language interface with an autonomous vehicle and a human super-
JP

visor.

Conceptual Dependency

A conceptual dependency (CD) structure represents relation-
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ships among the components of an action. Conceptual dependency

- . theory arose from the need to understand the meaning of sentenc-es

in natural language. The representation facilitates drawingL

* inferences from the sentences by showing the relationships among

the different components of the sentence. Furthermore, it is

independent of the language in which the sentences were

originally stated (13: 222). Thus, two different people may

- describe an event using different words, but the CD representa-

tion may be the same. A CD represents the event underlying the

* sentences rather than representing the sentences themselves

(14:13).

60 Whether the event is a physical or mental event, CD uses a

*simple structure to represent the core of an event. Every event

* represented in a CD structure has an actor, an action performed

by the actor, an object that the action is performed upon, and a

direction in which the action is oriented. Describing the rela-

tionships among these components is a set of primitive actions.

*Schank (14:17-25) describes eleven such primitive actions used in

* natural language understanding; however, this thesis focuses on a

*very small subset. Specifically, we are interested in the primi-

tive acts move and grasp. These two acts are used repeatedly by

*the autonomous vehicle in the aircraft flightline domain. For

* example, a CD representation for the statement "The robot went to

the aircraft" has the following components:

actor: robot

action: move

object: robot
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direction: to aircraft )%
from current location

These four components adequately convey the meaning of the

sentence, and they are in a form that suggests a software

representation. Each component consists of a pair of attributes:

a role attribute, and a filler. Thus, in the previous example

the role attribute is "actor" and its filler is "robot". This

construct was used in the planning system to represent the

vehicles meta-planning, and general planning knowledge. However,

much more freedom was taken in the use of primitive actions.

Schank describes a canonical method for using primitive acts

in constructing CD's for natura.1 language understanding. Strict

adherence to these methods was not followed here because they

tended to detract from the easy understanding of the knowledge

4* rule base. Instead, great freedom was taken with CD theory in an

effort to construct planning rules in a format that was easy for

the reader to understand, while still maintaining a format that

would allow future modifications to conform to the CD format

described by Schank.

As mentioned earlier, the construct used was that of a role

attribute and filler attribute. This role-pair construct is

prefaced by a predicate which describes the event. The format is

then:

( <predicate> <role-pair> <role-pair> ... )

Furthermore, these constructs can be nested so that the filler

S . attribute can be a predicate-role-pair construct. For example,

given the following sentence:
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The robot should use its move-plan to
get from the workbench to the aircraft

A possible CD representation could be:

(move-plan (actor robot)
(objective -.

(prox (from workbench)
(to aircraft))))

The predicate here is "move-plan" which describes the subsequent

event in the construct. The first role-pair is "actor robot"

which tells us who is to do the event. The second role-pair is

actually a nested role-pair. The role is "objective" which tells

us this is what the robot intends to do, and its filler is

another predicate-role-pair. The predicate here is "prox" which

describes the subsequent role-pairs. -"

" Hence, we can say the robot's objective is to place itself

• in the proximity of the aircraft by using its move-plan froi, the

workbench. Schank, on the other hand, would represent this

sentence in a more cryptic format that requires a deeper

- knowledge of CD theory in order to understand. The choice of

predicates and role-pairs used in this thesis was based on the

desire to allow the reader to immediately understand the rule

base without requiring him to digress into a study of CD theory.

Therefore, predicates such as "accomplish" and "do" are

frequently used in the rule base.

The predicates used in the rule base also describe the type

of rule, as well as the event itself. The predicate "action" r

signifies that the planning system is to formulate a plan to

4-
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accomplish this action. In this manner, the planning system can

distinguish between the tasks it is to plan for and the plans for

the task. So, if we wanted to give an autonomous vehicle the £*6

task of refueling an aircraft, we might formulate the task as

follows:

(action (actor robot)
(objective

(refuel (object aircraft-I)
(with nozzle-i))))

Here we are telling the robot to have the objective of refueling

aircraft-1 with nozzle-1. The planning system can then proceed

with searching its knowledge base to construct a plan for this

task.

There are other predicates that signify the type of rule,

-L but these predicates need to be discussed in the context of the

planning system. Therefore, they will be discussed in the sec-

tion on program structure and briefly in the next section as we

look at a primitive implementation of Wilensky's PAM program

which served as a foundation for the planning system developed

* here.

Micro-PAM

Micro-PAM is a simple program that captures the essential

flavor of Wilensky's PAM program (14:180; 15). The program is a

* story understander that uses knowledge about the planning process

in order to explain a story. The rules it uses are declarative

patterns that encode facts about how goals may give rise to -

. plans. The program processes a story a sentence at a time making
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inferences about the sentences by using its rule base. The

inferences are retained and said to be predicted when some occur-

rence in the story logically follows from a previous occurrence. L

*" As an example, consider the following two line story: .-.

John was hungry. John went to a restaurant.

Micro-PAM begins the understanding process by making inferences

about the first sentence. In its knowledge base it may have the

rule that says someone who is hungry may have the goal of

obtaining food; however, this goal is not predicted since we have

only processed the first sentence we cannot conclude that this is

John's goal. Therefore, we discard this inference and place the

first sentence under the category of theme. In other words,

John's hunger is now the theme of this story, and we can relate

any future inferences to this theme.

When the second sentence is processed, Micro-PAM may have

in its rule base a rule that states anyone who goes to a

restaurant may have the goal of obtaining food. This inference

is still not predicted since we need to know that being hungry is

instrumental to having the goal of obtaining food. Micro-PAM,

however, may have in its rule base the rule that says a subgoal

of obtaining food is to be hungry. Indeed, this subgoal is

predicted by the theme of the story: John was hungry. Hence,

these inferences have been predicted, and we can conclude that V

" John's reason for going to the restaurant was to obtain food.

It is this mechanism of relating themes to inferences that

is of interest i>ere. The domains are quite different, but the

mechanism is useful if we draw parallels between understanding a
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story and planning for a task. In story understanding, we are

' trying to relate known themes to inferences, and we do not con-

elude any inferences until we can make such a relation. Like-

wise, in planning for some given task, we could make inferences

about what needs to be accomplished, but we cannot conclude these

inferences until there is a relation between the inferences and

the statement of the task. Thus, the task itself becomes the

theme of the planning process, and we try to relate inferences

made to this theme. A success means we have not only constructed

a plan, but we have understood the task. Using the form of

conceptual dependency discussed previously, we might want to

construct a plan for the following task:

(action (actor robot)
(obj ec tive

(refuel (object aircraft-i)
(with nozzle-i))))

This task then becomes the overall theme for our planning

process, and inferences are made based on this theme. So, an

inference might be made that says a refuel-plan is called for in

this situation. This could be said to be related to the theme of

refueling an aircraft, but we are trying to relate an inference

to the more abstract notion of doing an action with something, in

this case nozzle-1. Therefore, another inference could be made:

(move-plan (actor robot)
(objective

(prox (from filling-station)
(to aircraft)
(with nozzle-i))))

This inference says a move-plan should be used to get the robot
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from the filling-station to the aircraft with nozzle-1. Again,

we could say this inference relates to the theme, and indeed it

does, except that the robot does not yet have a way to get

nozzle-1. For that matter, it does not even have a way to get to

the filling-station. We cannot say that this event is predicted

by the theme because of the current state of the robot's world

model; it needs to get to the workbench before it can get nozzle-

1. Therefore, it continues making inferences as long as it has

appropriate rules In its knowledge base. The next inference

might be:

(grasp-plan (actor robot)
(object nozzle-i)
(location filling-station)

The robot now has nozzle-1, but there is still an inconsistency

in its environment since its current location is different from

the filling-station. The next inference would remedy this

inconsistency:

(move-plan (actor robot)
(objective

(prox (to filling-station)
(from current-location)
(with nothing))))

The key elements of this inference are that it moves the robot

from its current location to the filling-station, and it requires

that the robot have nothing in its grasp. This inference would

be consistent with its current state since the very general term

current-location is used, and the robot is not currently holding r--

anything. Therefore, we can say that this inference was
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predicted, and hence all the inferences were predicted. If the

robot had run out of matching rules in its knowledge base before

making a prediction, we could say that the robot did not know how

to perform this task.

In general, an inference is predicted if it involves an

action that is consistent with the vehicle's world model and the

description of the task. Therefore, we are not really using the

task itself to predict the inferences, but instead we are using a

combination of the task and the vehicle's current state. The

task is used immediately to infer the high-level solution of

using the refuel-plan, whereupon the task becomes the overall

theme to judge the validity of the intervening steps. This is in

contrast to Micro-PAN which only allows a story's sentence to

become a theme when it can no longer make any more inferences.

There is an advantage to this particular approach when one

considers the problem of an autonomous vehicle attempting to

understand the actions of another autonomous vehicle. By obser-

ving the actions of the second vehicle, the first vehicle can

search its knowledge base to infer the second vehicle's task. If

one vehicle has observed another moving to the filling station

with nothing in its grasp, then the first vehicle can say this

action would be predicted from an order to refuel an aircraft.

With this assumption, the first vehicle can formulate an entire
p

plan the second vehicle might follow and try to combine the

actions of the two vehicles if they have movements in common. An

attempt to combine plans with another vehicle might arise if one

- . vehicle has some task that it is unable to accomplish alone.

Combining plans is an acceptable strategy that humans use
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regularly, and it is a form of meta-planning that Wilensky refers

to as goal concordance, or a positive interaction between the

goals of different planners (16:220). Obviously, this type of

planning would require knowledge about the tasks of other

vehicles in the environment and knowledge about how to plan for

them. The structure of the rules in Micro-PAM s knowledge base,

however, allows separate databases to be stored.

Micro-PAMos rules are grouped under four categories:

1. Instantiation

2. Planfor

3. Subgoal

4. Initiate

An instantiation relates events to plans they may be a part of.

Therefore, an instantiation rule would relate an order to refuel

an aircraft to the vehicle's refuel-plan. A planfor, on the

other hand, relates plans to goals that might be applicable. So,

a refuel-plan might be related to the goal of moving to the

aircraft. The subgoal category would relate this goal to an

applicable plan, such as the vehicle's move-plan. Finally, the

initiate category relates the themes to goals or plans that the

vehicle may infer. Hence, the initiate rules might relate a

refuel order to a plan involving moving to a filling station. Li

*- The rules themselves are grouped under each category as

- pairs of CD structures such that the occurrence of one implies

the other. The CD structures have specific predicates and roles; r

however, the fillers are variable patterns. Thus, the CD struc-
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tures are very general and can be matched with an appropriate

instance of the CD structure. For example, a very general form

of the move-plan CD might be:

(move-plan (actor ?x)
(objective

(prox (to ?y)
(from ?z)
(with ?w))))

The variables in the CD are prefixed with a question mark which

allows the pattern matcher to replace them with specific instan-

ces. So, ?x might be replaced with "robot" and so on.

The concept of making inferences and then trying to predict

them is a component of Micro-PAM that was retained in this imple-

mentation. Micro-PAM has several drawbacks, however, that limit

its usefulness as a planning mechanism. It has a fixed control

structure that is really not conducive to implementing the con-

cepts Wilensky discusses in his theory on meta-planning.

Moreover, none of the rules in the knowledge base are indexed, so

.: the program does a sequential search through the rule base until

it fInds a rule that matches. Also, Micro-PAM has no way of

handling sophisticated goal relationships such as might occur

when trying to combine plans. And finally, Micro-PAM does not

* really demonstrate the ability to use knowledge about the

planning process while constructing plans. Furthermore, it has

." none of the other components Wilensky proposes, such as a plan

projector and goal detector. Each of these drawbacks, however,

were addressed in this thesis effort.
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r Program Structure

In order to reduce the time required for Micro-PAM to search

its knowledge base, a discrimination net was used in order to

index the rules. A discrimination net for indexing structures

containing variables was implemented using the description in

Charniak (2:162-169). The net facilitates the search through the

knowledge base by returning the structures whose index matches an

input. Thus, if the input is a CD that directs the vehicle to

refuel an aircraft, the discrimination net is searched using this

input to match the indexes in the net. When a match occurs, the

most appropriate structure is returned, in this case a refuel-

plan CD would be returned. Hence, the search is a best first

search as opposed to Micro-PAM's depth first search. This type

of indexing scheme is crucial for an application that contains a

very large rule base, and indeed an autonomous vehicle would

require a very large rule base for the type of planning des. 'bed

by Wilensky. Furthermore, meta-planning requires the capability

to manipulate plans by combining, deleting, or altering the

original scenarios. Therefore, some method of associating tasks

with their plans is needed in order to implement aspects of meta-

planning.

As mentioned in Chapter III, an acceptable meta-plan is to

combine plans. But, what happens if two plans are combined and

- something occurs in the vehicleos environment that invalidates

- one of the plans? An occurrence such as this might require

removing the affected plan. Therefore, we need a method of r-"1

identifying the affected elements of the plan in the database.
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* Charniak describes a simplified version of Doyleos truth

maintenance system that proves adequate for this application

(2:193-201).

When plans are created, each element of the plan is stored

in a structure with three components: the plan itself, a pointer

indicating the task that it is a component of, and a pointer to

the next element in the plan. Figure 10 shows an example of such

a structure for the task of refueling an aircraft. Thus, if two

plans have been combined, each component of the plan identifies

its parent task and the next component in the plan. If one plan

has to be deleted, common elements of the combined plans would

not be deleted since they are justified by more than one task as

shown by the pointer m003. This element of the plan is justified

by two tasks, aOO1 and a002. Therefore, it would not be deleted

if one of the tasks is invalidated. We now have a structure for

the database that allows the application of meta-planning theory.

However, the basic structure of Micro-PAM's knowledge base needs

to be altered to separate the planning rules from the meta-

planning rules. This type of division implies that two types of

planning will occur: meta-planning and general planning. The

basic inferencing mechanism, however, can be used for both types

of planning if a common structure for the meta-planning and

general planning rules is used.

Recall that the rules were grouped in Micro-PAM under four

categories. The categories classified the type of rule contained

as either an instantiation, planfor, subgoal, or initiate rule.

This type of classification can be used to add in another type of

rule -- a meta-planfor rule. A meta-planfor rule would relate
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aOO1 --- > (refuel task) a002 --- > (repair task) L

M001 --- > (move-plan (aOO1) (m002))

m002 --- > (grasp-plan (aOO1) (m003))

m003 --- > (move-plan (aOOl a002) (m004))

m004 --- > (refuel-plan (aOO1) (m005))

m005 --- > (repair-plan (a002) nil)

Figure 10. Truth Maintenance.

policies about the plan to meta-plans for accomplishing those

policies. If the current policy governing a series of tasks was

to plan for those tasks as efficiently as possible, then a

possible meta-plan to accomplish this might be to plan each task

separately and then combine the plans. This would be represented

in the knowledge base as follows:

(meta-planfor
(accomplish (plan ?y)

(combine ?y))
(policy (planner ?x)

(objective (plan
(efficiently ?y)))))

The predicate "accomplish' illustrates the freedom taken with CD
r

structures. This predicate is not explicitly allowed in CD

theory; however, it is more descriptive for this application and
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was used in order to enhance the readability of the rule base.

\ *V" The previous example illustrates another enhancement of the

original Micro-PAM. The meta-plan rule tells the planner to plan

* for each task and then combine the resulting plans. This implies

that the control structure of the planner is directed by the

knowledge base dependent on the prevailing plan policy. There-

fore, a different policy might involve using different components

of the planner, and indeed this does occur. The planner is

passed the current plan policy from the operating system,

whereupon the meta-plan rule base is used to specify an initial

flow of control. After that, the planner is free to alter the

policy based upon its ability to plan for a particular task.

An autonomous vehicle could be given an order to plan for a

Cparticular task such as a refuel task. The planner would begin

by initially planning for the policy in order to define the

appropriate control structure. After obtaining the cIILtrol flow,

the planner begins processing the meta-plan which tells the

planner which functions to use for the current policy. As in the

previous example, this might involve planning for the task and

then combining the plan with other plans. While planning for the

task, the planner may be unable to predict any of the inferences

because perhaps the vehicle's world model is inconsistent with

the specification of the task. The task specification may have

directed the vehicle to use nozzle-i, but the planner is unable

to locate nozzle-I because it 'ay be in use. Therefore, we have

a plan failure, and it is unreasonable for the planner to

continue with the ori.ginal control structure. However, an

75

........................................................

-. .. . ,"-. .. -. - . ... .- - , . .- . -. . -. .. '.. . .. -. '. . " * '- -* . - . ..' ,' ",.- ., . - " .- ','.'-"-. . - .,' '- L L '. J ' '_ : .' ,,_ " ' '_ -_ ' ; _- .'-' .. * . . " . - - "A _- " '.I : " ' ",L; -- ' ' ' . .' '' "' '' ' '' '' ''.'



acceptable meta-plan for this occurrence is to alter the

. :... scenario. In other words, if a planner is unable to accomplish

an original task, then try changing some aspect of the specifica- g

. tion so that the ultimate goal is still achieved. Therefore, the

" planner could alter the task specification by using nozzle-2

instead of nozzle-i. The ultimate goal of refueling the aircraft

can still be accomplished because, in this case, it is irrelevant

which nozzle is used.

The planner, however, needs to query the meta-plan knowledge

base. Therefore, it uses the original task specification to see

if any suitable meta-plan exists. The meta-plan would specify

which functions to use in case no plan could be constructed for a

task. So a suitable meta-plan for this example might be:

(accomplish (alternative-scenario task))

The meta-plan directs the planner to use the function

alternative-scenario with the original task. Planning can then

proceed if an alternative scenario does exist.

In the event no alternative scenario exists, the entire

planning process for the task has failed. The planner needs to

formulate this into a policy identifying the function that failed

rather than the task. Thus, the initial policy has been altered

by the planner in an attempt to salvage the entire planning

process. The new policy might take the form:

(policy (planner vehicle)
(objective

(plan
(failed "function that failed"))))
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This policy identifies which function in the planner has failed.

Using this new policy, the planner can query the meta-plan rule

base to see if another control flow might salvage the planning

process. If no new control flow exists, then the planner may

just have to abandon the task and try to plan for other more

valuable tasks.

The preceeding description of the meta-plan rule base

implies the existence of functions that can formulate policies,

seek alternative scenarios, and combine plans. Each of these

functions was added to the original Micro-PAM in order to provide

the capability to accomplish meta-plans. Another function, not

previously mentioned, was added in order to provide the function

of abandoning plans. Furthermore, a sorting function was added

to provide the capability of ordering the tasks by decreasing

value.

Each plan in the rule base is given a plan value that de-

notes its relative importance. A refuel-plan might have a higher

value than say a plan involving sweeping the floor. Hence, the

planner has the capability to judge the importance of each task.

Therefore, if a meta-plan calls for abandoning a task, a policy

might be spawned that directs the planner to maximize the value

of the remaining tasks. A suitable meta-plan to accomplish this

is to sort the remaining tasks by value and then plan for them.

Once planning has been accomplished, the planner can then proceed

to the final phase -- refining the plans.

Up until now, components of a plan have only been stated in

abstract terms such as refuel-plan, move-plan, and grasp-plan.

The planner now needs to transform these components into actions

77

" :-L -"" " -' . -"-"" " ." " - -'.--•-'" ,-"'"," " " ."-""- " :-- " "--"" -'" - "'" " " " -""-'-'-- :"



that the operating system can understand. This phase of planning

has been termed the refinement phase, and it is accomplished by

the refine function. Each plan in the rule base has associated

with it a script, or a set of pre-defined actions for

accomplishing the plan. The scripts are in the form of ROSS

messages that can be used by the operating system to direct

Vactions. For example, the grasp-plan might have the following

script:

(tell arm move to location ?y)
(tell arm close hand)
(tell arm retract)

*The script consists of three ROSS messages to the appropriate

* actor in the operating system. Furthermore, they are in a

cgeneral format since the y variable is not specified. Therefore,

* it is the job of the refine function to fill in this variable

before passing the script to the operating system. The messages

are indeed actions that would be performed no matter what the

vehicle had to grasp. The arm is first moved to some location,

-then the hand is closed, and finally the arm is retracted. The

only variable in the action is the location. Moreover, it is not

necessary to tell the operating system to first check for an

* empty hand since this is handled by the planner at an abstract

*level In the planning phase. The planner will not allow grasp-

* plans to occur in sequence without an intervening ungrasp-plan.

* Nevertheless, the operating system does indeed check the black-

board to ensure no object is in the vehicle's grasp.

The incorporation of scripts required that a separate rule

78



F. 7 7 7 r 7

base be created to store the scripts. Rather than just add an

'-,' additional category, such as a script-for category, the scripts

were placed in a separate rule base which allowed the use of the

same categories but in a different context. The preceeding

script for the grasp-plan could then be stored in this rule base, I.

known as the refine-rules database, in the following form:

(planfor
((tell arm move location ?y)

(tell arm close hand)
(tell arm retract))

(grasp-plan (planner ?x)
(object ?y)
(location ?w)))

This rule says that a plan for a grasp-plan is the script encoded

in the rule. The refine function would have the job of finding

the coordinates of object ?y and substituting it in the script.

The decision to create a separate rule base was based upon the

possibility of allowing the planning system to manipulate the

scripts exclusively, rather than first plan at a high level of

abstraction. If only some minor deficiency exists in a script,

the planner could plan using the scripts themselves, rather than

their more abstract equivalents. This, however, is a function

that was not implemented. Nevertheless, a future upgrade could

make use of the structuring of the rule base to incorporate such

a capability.

To summarize, the basic inferencing mechanism of Micro-PAM,

along with its CD structure, was used as a foundation for the

planning system in this thesis. Enchancements to the basic

S -, Micro-PAM structure include the following:

S - .7.
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1. Discrimination net to index the rules

* -i 2. Basic truth maintenance capability ~

3. Meta-plan category

4. Functions to handle meta-planning

5. Separate rule base for scripts

6. Capability to judge value of plan

7. Flow of control specified in rule base
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VI. Integration and Testing

Introduction

Although this thesis has been divided into operating system

* design and planning system design, the two components are in

effect two planners with different philosophies. The operating

* system is a planner whose entire knowledge is procedurally en-

*coded in each of the actors. Therefore, adding to its knowledge

base requires adding new actors, or adding new behaviors to the

*existing actors. The mission planner's knowledge base, on the

*other hand, is more declarative in nature. Adding new planning

knowledge means adding new rules, and adding new meta-plans

* simply means specifying a new control f low.

The dichotomy becomes less evident, however, when the two

components are integrated. The output of the mission planner is

* now in effect determining the control flow of the operating

*system. The mission planner suggests how the operating system is

to use its actors to accomplish a task. However, it does not

- fully specify the control f low because its knowledge of the

*operating system is limited. Likewise, the operating system's

knowledge of the mission planner is limited to policies it knows

the mission planner can handle. Thus, we have the interface

* points for the two components. The operating system must formu-

- * late its commands Into policies the mission planner can under-

s stand, and the mission planner must formulate its commands into

81



messages the operating system can understand. The result of the

integration illustrates the clearly defined jobs of each

component.

Integration

The interface points have already been identified in

Chapters IV and V. The operating system communicates with the

mission planner through the use of the mission-planner actor. As

mentioned in Chapter IV, the mission-planner actor only has one

message template and behavior. Its sole job is to obtain the

current policy from the blackboard and to invoke the planning

function. Once planning has ended, the mission planner actor

stores the resulting plans in the blackboard and returns control

to the scheduler. Thus, the interface in one direction is

straightforward and provides great flexibility for future up-

grade.

The planning system communicates with the operating system

in a like fashion through the use of scripts. The scripts are in

reality ROSS messages in CD forms. Since the operating system

cannot understand CD structures, it needs to translate them into

the proper format. The nature of Lisp, however, allows this to

be accomplished quite easily. CD forms are just nested lists,

and in order to translate them into the proper format, the opera-

ting system just needs to remove all of the internal parentheses.

Testing

Testing was done on a VAX 11/780 running under the UNIX
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operating system. The objectives of the test were to

" -demonstrate:

1. Planning and meta-planning

2. Plan projection

3. Goal detection

Four tasks were selected to demonstrate these objectives, as well

as the meta-planning concepts of:

1. Combining plans

2. Abandoning plans

3. Seeking alternative scenarios

4. Recovering from plan failure

The four tasks selected were stored under the global variable

robot-task in the CD form:

(setq robot-task
0((action (actor (vehicle (name (robot-i))))

(refuel aircraft)
(with nozzle-i))

(action (actor (vehicle (name (robot-i))))
(repair engine)
(location aircraft)
(with engine-tools))

(action (actor (vehicle (name (robot-i))))
(maintain work-bench)
(with work-bench-supplies))

(action (actor (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))))

The first task directs the vehicle to refuel an aircraft with a

nozzle, while the second task directs the vehicle to repair the

engine on the same aircraft. The next two tasks are less impor-

tant general house-keeping functions to be performed by the
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vehicle. It must ensure the work-bench has ample supplies and

the various sensors in the area are functioning properly. The

vehicle's environment is the same as in Figure 8, repeated here 9

in Figure 11.

6
Y Aircraft

5 X
c Filling
o 4 Stations
0 Sensors l and 2
r 3 X X X
d Workbench
i 2 X
n Supply Robot
a 1 X Room X Refueling
t BASE Station
e 0 X -

O 1 2 3 4 5 6 7 8 9

X-coord ina te

Figure 11. Autonomous Vehicle's Environment.

The following is an edited transcript of the test run.

Comments have been included to highlight the important concepts.

A complete transcript of the test run can be found in the

Appendix.
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VERSION: Wed Jan 19 11:26:26 1983

The ROSS environment has been invoked and the user now asks

the scheduler actor to run a simulation for a maximum of 300 time

steps.

-> (ask scheduler go 300)

*** ROBOT SIMULATION ***
Current Coordinates: (0.0 0.0)
Current Location: base
Current Resources: 100

After printing a banner showing its current state, the

* scheduler invokes the planner actor and tells it to plan. The

planner signals that it is ready to plan for the current policy. ".

Ready to plan

Looking for a meta-plan for Policy:

(policy (planner robot)

(objective (plan (efficiently robot-task))))

Possible explanation assuming R

(accomplish (clear-globals all)
(process-cds robot-task)
(combine-plans *task-plans*)
(process-cds *return-action*)
(refine nil))

The planner has arrived at a meta-plan to accomplish the

" planning policy. First it is to clear any global variables, plan
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for each task separately, combine the plans, plan a return

% "action, and finally refine the plans into scripts.

A meta-plan for this policy is:

((clear-globals all) (process-cds robot-task)
(combine-plans *task-plans*)
(process-cds *return-ac tion*)
(refine nil))

It now plans for the first task.

Planning

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-i))

Event not predicted

Possible explanation assuming

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-i))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i)))) L
(objective

(prox (actor (vehicle (name (robot-i))))
(location aircraft)
(with nozzle-i))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location nil))) r
(to (prox (location aircraft)))
(with nozzle-i))
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No usable inferences from

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-i))

No usable inferences from
4.,

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-i))

No inference chain found--

The planner was unable to find a plan for the first action

because nozzle-I was unavailable. Therefore, it seeks a meta-

plan for the task.

j Seeking Meta-Plan for:

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-I))

Possible explanation assuming

(accomplish
*): (al ternative-scenario

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-i))))

Trying Alternative Scenario

Possible explanation assuming

(accomplish
(jus tify-alternative

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)

* .. -(with nozzle-2))))

.4
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The planner has arrived at the meta-plan of trying an

"':' alternative scenario for the task. An alternative scenario for

this particular task is to try using a different nozzle to

accomplish the task.

Planning

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))

Event not predicted

Possible explanation assuming

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-2))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(ob j ec tIve

(prox (actor (vehicle (name (robot-i))))
(location aircraft)
(with nozzle-2))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location filling-station)))
(to (prox (location aircraft)))
(with nozzle-2))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(grasp (object nozzle-2) -
(location filling-station)))) -

Event not predicted
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Possible explanation assuming

(grasp-plan (planner (vehicle (name (robot-i)))) ,.'
(object nozzle-2)
(location filling-station))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location filling-station)
(with nil))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location filling-station)))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))

Adding inference chain to data brse

The planner has arrived at a plan for the first task and

then proceeds to plan for the second task of repairing the

aircraftos engine.

Planning

(action (actor (vehicle (name (robot-I))))
(repair engine)
(location aircraft)
(with engine-tools))

Event not predicted
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Possible explanation assuming

(repair-engine-plan (planner (vehicle (name (robot-i))))
(object engine)
(location aircraft)
(with engine-tools))

Intervening planning steps have been left out, but the

planner successfully arrives at a plan for the second task.

Event predicted from

(action (actor (vehicle (name (robot-i))))
(repair engine) 41
(location aircraft)
(with engine-tools))

Adding inference chain to data base

The planner now plans for the third task of maintaining the

work-bench.

Planning

(action (actor (vehicle (name (robot-i))))
(maintain work-bench)
(with work-bench-supplies))

Event not predicted

Possible explanation assuming

(replenish-work-bench-plan
(planner (vehicle (name (robot-i))))

(maintain work-bench)
(with work-bench-supplies))
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Intervening planning steps have once again been left out, but

the planner successfully plans for the third task.

.-.5

Event predicted from

(action (actor (vehicle (name (robot-i))))
(maintain work-bench)
(with work-bench-supplies))

Adding inference chain to data base

The planner now plans for the fourth and final task of

maintaining the sensors in the work area.

Planning

(action (actor (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))

Event not predicted

Possible explanation assuming

(sensor-repair-plan (planner (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))

Event predicted from

(action (actor (vehicle (name (robot-I))))
(maintain sensors)
(with sensor-supplies))

Adding inference chain to data base
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The planner is now finished with each task and proceeds to

the task of combining the plans to accomplish the policy of

creating an efficient plan. P

Combining Plans

The planner has finished combining plans and now sorts the

plans so that the most important plans are done first.

Sorting Plans by value

The planner now plans for a return action. Once the vehicle

has accomplished all of its tasks, it will need some way to get

back to its home base; therfore, the planner anticipates this and

plans appropriately.

Planning

(action (actor (vehicle (name (robot-i))))
(objective (return (location base))))

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location base)))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-i))))
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(objective (return (location base))))

Adding inference chain to data base

The planner now refines the plans into scripts that the

operating system can understand.

Refining the Plans

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location filling-station)))
(with nil))

Refining

(grasp-plan (planner (vehicle (name (robot-i))))
(object nozzle-2)

4(location filling-station))

Ref ining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location filling-station)))
(to (prox (location aircraft)))
(with nozzle-2))

Once the planner has completed the refinement phase, it

prints the database. A portion of the database is shown here as

composed of scripts in the form of ROSS messages. Notice that

each script is composed of a message, a pointer to its parent

task, and a pointer to its subsequent task. The header

"executive" in each message tells the operating system to use the
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function executive to process the message. In this manner, the

initial control flow of the operating system is specified.

The database now contains:

(((executive (tell (route-planner)) A.
(start current-location)
(goal filling-station)) (a00005)

m00032)
((executive (tell (scheduler))

(move route)) (a00005)
nil)

((executive (tell (sensor)) I.
(locate nozzle-2)) (a0005)m00034)

The planning phase is now complete and control is returned

to the operating system for the plan projection phase. The

operating system then takes the script database and begins

processing the scripts one at a time. The first script is a

command to move to the filling-station.

Move Robot
Start Location: base
Destination: filling-station

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

•*** Time step: 1 ****

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation
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Robot moves forward: 0.5 meters
• ... .*

Ecd u

Sncoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 2 ****

New coordinates are (0.5 0.0)

Robot moves forward: 0.5 meters

**** Time Step: 5 ****

New coordinates are (1.314835507758704 0.38843095017559-95)

At this point while travelling to the filling-station the

vehicle strays from its course. Therefore, the errorhandler

actor is called to handle the error condition.

Course deviation -- calling errorhandler

New heading has been computed

Turn right -9.227130622162847 degrees
Reorient Robot -9.227130622162847 degrees

•V

The vehicle eventually achieves its goal and then proceeds

to accomplish the task of getting nozzle-2. However, the amount
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of effort it took the vehicle to travel to the filling-station

caused a low fuel state. Thus, a goal detection occurs and the

operating system informs the planner of the new goal.

**** Time Step: 26 ****

New coordinates are (7.000796326710733 2.999999682931835)

Goal achieved

Remaining resources: 78
Current location: filling-station
Coordinates: (7.0 3.0)

Robot Fuel Critically Low

CO Looking for a meta-plan for Policy:

(policy (planner robot)
(objective (plan (maximize *low-robot-fuel-task*))))

Possible explanation assuming V

(accomplish (save-top-level-tasks nil)
(clear-globals some)
(process-cds *low-robo t-fuel-task*)
(process-cds *return-suspend-ac tion*)
(sort *task-plans*)
(refine nil)
(restore-top-level-tasks nil))

A meta-plan for this policy is:

((save-top-level-tasks nil) (clear-globals some)
(process-cds V

*low-robot-fuel-task*)
(process-cds

*re tu rn-su spend-ac tion*)
(sort *task-plans*)
(refine nil) r
(restore-top-level-tasks nil))
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Planning

(action (actor (vehicle (name (robot-i))))
(correct (state (low robot-fuel))))

Event not predicted

Possible explanation assuming

(refuel-robot-plan (planner (vehicle (name (robot-i)))) -
(correct (state (low robot-fuel)))
(with suspended-state))

Event predicted from

(action (actor (vehicle (name (robot-i))))
(correct (state (low robot-fuel))))

Adding inference chain to data base K'

Planning '

(action (actor (vehicle (name (robot-i))))
(objective (return (location suspend-location))))

r

Event predicted from

(acti'n (actor (vehicle (name (robot-i))))
(objective (return (location suspend-location))))

Adding inference chain to data base

Sorting Plans by value
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Refining the Plans

Refining

(suspend-state-plan (planner (vehicle (name (robot-i)))))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location suspend-location)))
(to (prox (location robot-fuel)))
(with suspended-state))

Refining

(refuel-robot-plan (planner (vehicle (name (robot-i)))) &
(correct (state (low robot-fuel)))
(with suspended-state))

The planner has successfully planned for the low fuel

OAO condition and control is returned to the operating system to

continue with the plan projection phase. In order to prevent the

operating system from having to start the plan projection phase

all over again, the planner has instructed the operating system

to suspend its current state until it refuels. Therefore, plan

projection for the original tasks can resume at the point at

which it was interrupted.

Move Robot
Start Location: filling-station
Destination: robot-fuel

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

r•*** Time step: 27 ****

Confirm initialization
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Heading error in initialization

Calling Error Handier

New heading has been computed

Turn right -180.0 degrees
Reorient Robot -180.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 28 ****

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

L"L

The vehicle eventually arrives at the robot refueling

station, and the operating system instructs the vehicle to refuel

by inserting its robot finger into the refuel socket.

**** Time Step: 32 ****

New coordinates are (7.001592653421467 1.000000634136331)
r

* lGoal achieved
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Remaining resources: 73
Current location: robot-fuel
Coordinates: (7.0 1.0)

Sensors have located refuel-socket

Arm moved to refuel-socket

robot-finger has been inserted

Robot Refueled
Current resources: 1000

The vehicle now returns to the point at which it was

interrupted.

Move Robot
Start Location: robot-fuel
Destination: filling-station

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

•*** Time step: 33 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 180.0 degrees

Reorient Robot 180.0 degrees

Re-initialize memory

Encoder initializes memory
.* Sonar initializes memory

Gyro initializes memory
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After arriving back at the filling-station, the operating

system continues the plan projection phase. However, in the time U
it took the robot to refuel itself, nozzle-2 has become

unavailable. Therefore, the operating system detects a new goal

for the vehicle and formulates it into a policy for the planning

system. The situation is similar to what occurred with nozzle-i; L

however, this time the nozzle was unavailable during the plan

projection phase.

**** Time Step: 38 ****

New coordinates are (7.001592653421467 2.999999365863669)

Goal achieved

Remaining resources: 995
Current location: filling-station
Coordinates: (7.0 3.0)

Sensors cannot Locate: nozzle-2

Task Failure Detected

Failed Function: (s00005)

Modifying Policy

The planner is now looking for a meta-plan for the failed

task indicated by its pointer aO0005. The solution is similar to
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what occurred with nozzle-1 except this time the planner abandons

the task aO0005 and then seeks an alternative scenario. The

intervening functions it performs all relate to management of the

plan database.

Looking for a meta-plan for Policy:

(policy (planner robot)
(objective (plan (failed a00005))))

Possible explanation assuming

(accomplish (abandon a00005)
(move-to-top-level nil)
(clear-globals some)
(extern-plan-fail s,00005)."-..

(sort *task-plans*)
(push-new-plan nil)
(refine nil))

40~

A meta-plan for this policy is:

((abandon a00005) (move-to-top-level nil)
(clear-globals some)
(extern-plan-fail a00005)
(sort *task-plans*)
(push-new-plan nil)
(refine nil))

Abandoning Plan a00005

Seeking Meta-Plan for:

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))

Possible explanation assuming

(accomplish
(alternative-scenario

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
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(with nozzle-2))))

Trying Alternative Scenario

Possible explanation assuming

(accomplish
(jus tify-alternative
(action (actor (vehicle (name (robot-i))))

(refuel aircraft)
(with nozzle-3))))

Planning

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-3))

Event not predicted

Possible explanation assuming

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)

(.9. (with nozzle-3))

The planner arrives at a solution and control is once again

returned to the operating system for the plan projection phase.

Nozzle-3, however, is located at filling-station-2 so the

operating system instructs the vehicle to move to filling-

station-2.

Move Robot
Start Location: filling-station
Destination: filling-s tation-2

Encoder initializes memory
Sonar initializes memory
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Gyro initializes memory

**** Time step: 39 ****

Confirm initialization

. P.
Heading error in initialization
Calling Error Handler

New heading has been computed

Turn right -90.0 degrees
Reorient Robot -90.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 40 ****

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

L.

***Time Step: 45 **

New coordinates are (9.0 3.0)

Goal achieved
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Remaining resources: 990
.* . Current location: filling-station-2

Coordinates: (9.0 3.0)

Sensors have located nozzle-3

Hand opened

Arm moved to nozzle-3

Hand closed

Arm retracted

Move Robot
Start Location: filling-station-2
Destination: aircraft

The vehicle arrives at the aircraft and then proceeds to

refuel the aircraft. Once refueling has been accomplished, the

operating system then moves to the work-bench to gather tools to
oU-

repair the engine on the aircraft. Notice that the plan of

refueling the aircraft and repairing the engine have been com-

. bined in such a fashion that there is a smooth transition between

the two plans. Once refueling is accomplished, the vehicle moves

* from its current location to the work-bench to carry out the next

task. The plans could not be further combined, however, since

each plan accomplishes a critical task and should not be

interrupted.
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**** Time Step: 67 ****

New coordinates are (4.00000126827246 5.001592652916487)

Goal achieved

Remaining resources: 974
Current location: aircraft
Coordinates: (4.0 5.0)

Sensors have located aircraft

Sensors have located filler-cap

Hand opened

Arm moved to filler-cap

Hand closed

Arm rotated

Arm retracted

nozzle-3 has been inserted

Move Robot
Start Location: aircraft
Destination: work-bench

• ..

**** Time Step: 83 ****
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New coordinates are (2.000796326710733 2.000000317068165)

Goal achieved

Remaining resources: 961
Current location: work-bench
Coordinates: (2.0 2.0)

Sensors have located engine-tools

Hand opened

Arm moved to engine-tools

Hand closed

Arm retracted .-.

Move Robot
Start Location: work-bench
Destination: aircraft

•*** Time Step: 99 ****

New coordinates are (4.000796326710733 4.999999682931835)

Goal achieved

Remaining resources: 948

Current location: aircraft
Coordinates: (4.0 5.0)

Sensors have located engine

Engine housing opened

Engine repaired
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The first two tasks have now been accomplished and the tk

operating sytem now moves to the less important house-keeping

tasks. These last two tasks have been more extensively combined

by the planner in order to minimize movements. The vehicle takes

inventory at the work-bench, then moves to the sensor area to

take inventory, and then moves to the supply room to gather

necessary supplies for both the work-bench area and the sensor

area. Thus, the vehicle only needs to go to the supply-room one

time.

The actual movements between locations have been edited

out.

kMove Robot
Start Location: aircraft
Destination: work-bench

S*** Time Step: 115 *

New coordinates are (2.000796326710733 2.000000317068165)

Goal achieved

Remaining resources: 935
Current location: work-bench
Coordinates: (2.0 2.0)

Work-bench inventory recalled from Blackboard

Work-bench inventory accomplished -

Move Robot
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Start Location: work-bench
Destination: sensors

•*** Time Step: 127 **** .

New coordinates are (5.0 3.0)

Goal achieved

Remaining resources: 925
Current location: sensors
Coordinates: (5.0 3.0)

Sensor inventory recalled from Blackboard

Sensor inventory accomplished

Hove Robot
Start Location: sensors
Destination: supply-room

*** Time Step: 137 ****

New coordinates are (4.000796326710733 1.000000317068165)

Goal achieved

Remaining resources: 917
Current location: supply-room
Coordinates: (4.0 1.0)
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Sensors have located sensor-supplies

Sensor inventory recalled from Blackboard

Cart loaded with sensor-supplies

Sensors have located work-bench-supplies

Work-bench inventory recalled from Blackboard

Cart loaded with work-bench-supplies .-

Move Robot
Start Location: supply-room
Destination: work-bench

•*** Time Step: 147 ****

New coordinates are (2.000796326710733 1.999999682931835)

Goal achieved

Remaining resources: 909
Current location: work-bench
Coordinates: (2.0 2.0)

Work-bench inventory recalled from Blackboard

work-bench-supplies obtained from cart

work-bench-supplies placed on work-bench

Move Robot
Start Location: work-bench
Destination: sensors
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**** Time Step: 158 ****

.%

New coordinates are (5.0 3.0)

Goal achieved

Remaining resources: 900
Current location: sensors
Coordinates: (5.0 3.0) .

Sensor inventory recalled from Blackboard

sensor-supplies obtained from cart

sensors repaired with sensor-supplies

The vehicle has accomplished all of its tasks and now

returns to its base location to await further instructions.

Move Robot
Start Location: sensors
Destination: base

**** Time Step: 183 ****

New coordinates are (0.0007963267107332947 3.170681653480445E-07)
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Goal achieved

*Remaining resources: 882
Current location: base5
Coordinates: (0.0 0.0)

t
-> (exit)
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VII. Summary, Conclusions, and Recommendations k

A %J

Summary and Conclusions

One of the goals of this thesis effort was to simulate the

processing environment in an autonomous vehicle in order to study

the interactions between critical components. The critical com-

ponents, in this case, are the operating system, mission planner,

and route planner. Particular emphasis was given to the opera-

ting system and the mission planner, since their functions are -.

crucial to the overall mission of the autonomous vehicle. The

route planning process, while equally important in function, has

been studied extensively elsewhere. The goal here was to imple-

ment a software architecture that could make effective use of all "

the vehicle's resources.

The architecture adopted for the processing environment was .

a blackboard control architecture. The implementation here

demonstrates the flexibility of such an architecture when applied

to the domain of autonomous vehicle planning. The mission plan-

ner transforms the task of planning for a specific problem into

the task of specifying an appropriate control flow for the opera-

ting system. The architecture explicitly represents domain and L

control problems and integrates the problem solving process into

a single basic control loop. Thus, the architecture adapts its

problem solving knowledge and its basic control loop to specific

problem solving situations (7:283-284).
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By partitioning the operating system into knowledge

specialists that each perform a basic function, a great deal of

flexibility can be achieved. Adding a new capability to the

vehicle simply means adding a new knowledge specialist. When to

use the added knowledge specialist is then specified by the

mission planner. If an additional arm is added to the vehicle,

the mission planner's rule base need only be modified to include

this additional knowledge. The operating system is not told when

to use it, or how to use it except when the mission planner

decides it should be used. However, the operating system does

require the capability to define its own control flow should the

one specified by the mission planner fail. As was shown in

Chapter VI, occasions may arise where the world model changes in

such a manner as to cause a task failure. Hence, the operating

system must be able to specify a temporary control flow in order

to recover from such an occurrence. It recovers by detecting new

goals and formulating these goals into a structure the mission

planner can understand.

The job of goal detection illustrates an important component

of the architecture. The operating system formulates the goals

into policies for the mission planner, which then uses its meta-

knowledge to plan for these policies. The mission planner's

control flow is specified by the planner's meta-planning r
knowledge; therefore, flexibility, similar to the operating sys-

tem's, is gained by declaratively encoding the planner's control

flow in the meta-rules. If a new capability is added to the r

planner, when and how to use that capability is specified in its
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rule base and not buried in a procedure.dt

" 'i Meta-knowledge can also be used to understand the actions of-:..

other autonomous vehicles. By "observing" the actions of other

vehicles in the environment, the operating system can formulate

those actions into goals. The mission planner can then use its U
meta-knowledge to try and deduce what policies the other vehicle

*is following. In this manner, the autonomous vehicle can deter-

mine if it can share actions with another vehicle in order to

accomplish a task. The ability to understand actions, as well as

plan for them, are crucial to a truly autonomous vehicle. The

architecture of the planning system provides this capability by

separating knowledge about how to plan from knowledge about the

particular problems.

Finally, the plan projection phase carried out by the opera-

ting system enables flaws in the basic plan to be detected. By

simulating the components of the plan, the operating system can

detect any inconsistencies in the world model, or uncover events

that would interrupt the actual plan execution. Thus, more L-.

efficient plans can be constructed if errors are detected during

the projection phase rather than during the execution phase.

Likewise, the plan projection phase can be used during the under- 1-

standing process to compare components of a hypothesized plan to

the actual plan of another vehicle. Inconsistencies would be

passed back to the mission planner who would then try to repair

the hypothesized plan. One mechanism, therefore, can be used

both for understanding and planning due to the explicit nature of

S-. the mission planner's knowledge base.
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Recommendations '

In order to fully demonstrate the capability of this archi-

tecture, the route planning function needs to be upgraded. The

* very simple route planner implemented was sufficient to demon-

strate the goals of this thesis; however, the rigid structure of

the route planner limited the strategies the vehicle could use to

accomplish its tasks. For example, the use of the mission plan-

ner to avoid dnmcojts ould not be demonstrated since this

would have required a route planner with the ability to plan

routes from arbitrary starting points In the environment. An

improvement in the route planning function would allow a greater

variety of tasks to be accomplished and would further demonstrate

the flexibility of the operating system.

With the upgrade of the route planner, the sensor actors

should be enhanced. Particular emphasis should be given to the

sonar actors and their job of detecting objects in the environ-

ment. This would imply the need to interface the algorithms used

by the sonars with the world model. Thus, the operating system

could use the sonar output to identify objects in the environ-

ment, thereby enhancing its plan projection capability. Further-

more, this new capability could be used to simulate actually

carrying out the plans in the environment.

Although the current implementation is limited to planning -

for four tasks, the addition of new tasks should not require a

great expansion of the knowledge base. The planning rules are

encoded in a very general format and should be applicable to a

variety of tasks. The meta-planning rules, however, should be
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upgraded to demonstrate more of Wilensky's meta-planning con-

cep ta. This would require that the appropriate functions be

programmed and then their specific use be encoded in the meta-

rules.

The mission-planner makes wide use of global variables

during the planning phase that may hamper future upgrade of the

planning system. The global variables should be eliminated or

moved into the blackboard. Likewise, the planner's knowledge -.

base should be moved into the blackboard where it can be shared .

more easily with other components of the operating system.

The planning system does not have an explicit "understand"

mode. With the current implementation, this capability would not I.,

be difficult to add. The required sensory ability would have to

be canned, of course, but the ability to understand would crea-te

a more powerful planning system.

The planner's ability to judge plan values should be re-

fined. The current implementation assigns arbitrary numbers t o

each task, and the planner merely considers the tasks with a 1.
*higher number as being more important. No attempt was made to

define an approach to assigning plan values, and the result was

that the plans were unjustifiably ordered. By defining an 1.
approach, the planner could better reason about the tasks it is

planning for.

Finally, the meta-planning knowledge base could be broken

down into levels. This would allow the control flow in the

planner to be more fully specified. Currently, the control flow

is specified at a very abstract level with only the main, or

driving, functions specified. Therefore, if a meta-plan calls
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for the plans to be combined, only the top-level routine is

specified in the meta-rule. The top-level routine then specifies

how to combine plans. By creating another meta-plan level,

control flow in particular functions could be specified, thereby

enhancing the planner's ability to explain its actions. For

example, the combine function will only combine low-value plans;

therefore, if no low-value plans exist, the planner could detect

this and use this as a means to explain why it couldn't combine

plans. This would be easy to detect since the planner has speci-

fied the control flow in the combine function using a meta-plan;

therefore, the failure could be pinpointed as occurring in one of 'A

the meta-plans. ,

LI
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Appendix: Test Run Transcript

The following is a complete test run of the operating and

planning system designed in this thesis. The tasks the planner

is to accomplish are:

(setq robot-task
-((action (actor (vehicle (name (robot-i))))

(refuel aircraft)
(with nozzle-i))

(action (actor (vehicle (name (robot-i))))
(repair engine)
(location aircraft)
(with engine-tools))

(action (actor (vehicle (name (robot-i))))
(maintain work-bench)
(with work-bench-supplies))

(action (actor (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))))

"i-nm============ = ROSS

VERSION: Wed Jan 19 11:26:26 1983

nil
-> (load "load.r)
t
-> (load 'oper.r)

route defined
t e
-> (load 'load.l)

. link defined

terminal defined

mvar defined

molecule defined
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IVLIN

-> (ask scheduler go 300)

*** ROBOT SIMULATION ***
Current Coordinates: (0.0 0.0)
Current Location: base
Current Resources: 100

Ready to plan

Looking for a meta-plan for Policy:

(policy (planner robot)
(objective (plan (efficiently robot-task))))

Possible explanation assuming

(accomplish (clear-globals all)
(process-cds robot-task)
(combine-plans *task-plans*)
(process-cds *return-action*)
(refine nil))

A meta-plan for this policy is:

(s ((clear-globals all) (process-cds robot-task)
(combine-plans *task-plans*)
(process-cds *return-action*)
(refine nil))

Planning

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-i))

Event not predicted

Possible explanation assuming

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-i))

Event not predicted

Possible explanation assuming

. (goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
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(location aircraft)
(with nozzle-i))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location nil)))
(to (prox (location aircraft)))
(with nozzle-i))

Event not predicted

No usable inferences from

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location nil)))
(to (prox (location aircraft)))
(with nozzle-i))

No usable inferences from

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location aircraft)
(with nozzle-i))))

No usable inferences from

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-i))

No usable inferences from

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-i))

No inference chain found--

Seeking Meta-Plan for:

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-i))

Possible explanation assuming

(accomplish
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(al ternative-scenario
(action (actor (vehicle (name (robot-i))))

V.- (refuel aircraft)
(with nozzle-i))))

Trying Alternative Scenario

Possible explanation assuming

(accomplish
(justify-alternative

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))))

Planning

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))

Event not predicted

*Possible explanation assuming

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-2))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(ob j ec tive

(prox (actor (vehicle (name (robot-i))))
(location aircraft)
(with nozzle-2))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location filling-station)))
(to (prox (location aircraft))),.
(with nozzle-2))

Event not predicted

Possible explanation assuming
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(goal (planner (vehicle (name (robot-I))))
(objective

(grasp (object nozzle-2)
(location filling-station))))

Event not predicted

Possible explanation assuming

(grasp-plan (planner (vehicle (name (robot-I))))
(object nozzle-2)
(location filling-station))

Event not predicted

Possible explanation assuming .

(goal (planner (vehicle (name (robot-I))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location filling-station)
(with nil))))

Event not predicted

Possible explanation assuming

Li (move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location filling-station)))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))

Adding inference chain to data base

Planning

(action (actor (vehicle (name (robot-i))))
(repair engine)
(location aircraft)
(with engine-tools))

Event not predicted

* Possible explanation assuming

(repair-engine-plan (planner (vehicle (name (robot-I)

123

- • -. t. -+.- .- -. . . . ... . . . .. . . .
". . .



W. '.W.,.

(object engine)
(location aircraft)
(with engine-tools))

Event not predicted £

Possible explanation assuming

(goal (planner (vehicle (name (robot-i)))) '

(objective
(prox (actor (vehicle (name (robot-i))))

(location aircraft) -

(with engine-tools))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location work-bench)))
(to (prox (location aircraft)))
(with engine-tools))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(grasp (object engine-tools)
(location work-bench))))

Event not predicted

Possible explanation assuming

(grasp-plan (planner (vehicle (name (robot-i))))
(object engine-tools)
(location work-bench))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location work-bench)
(with nil))))

Event not predicted
r .

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
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(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-i))))
(repair engine)
(location aircraft)
(with engine-tools))

Adding inference chain to data base

Planning

(action (actor (vehicle (name (robot-i))))
(maintain work-bench)
(with work-bench-supplies))

Event not predicted

Possible explanation assuming

(replenish-work-bench-plan
(planner (vehicle (name (robot-i))))

(maintain work-bench)
(with work-bench-supplies))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location work-bench)
(with work-bench-supplies))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location supply-room)))
(to (prox (location work-bench)))
(with work-bench-supplies))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective
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(load-cart (actor (vehicle (name (robot-i))))
(location supply-room)
(with work-bench-supplies)
(using (inventory

(location work-bench))))))

Event not predicted

Possible explanation assuming

(get-supply-plan (planner (vehicle (name (robot-i))))
(location supply-room)
(supplies work-bench-supplies)
(inventory work-bench))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(from work-bench)
(to supply-room)
(with (knowledge

(inventory work-bench-supplies))))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (nalie (robot-i))))
(from (prox (location work-bench)))
(to (prox (location supply-room)))
(with (knowledge (inventory work-bench-supplies))))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(do (actor (vehicle (name (robot-i))))
(inventory work-bench))))

Event not predicted

Possible explanation assuming

(inventory-plan (planner (vehicle (name (robot-i))))
(location work-bench))

Event not predicted

Possible explanation assuming
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(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location work-bench)
(with nil)))) -

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-i))))
(maintain work-bench)
(with work-bench-supplies))

Adding inference chain to data base

Planning

(action (actor (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))

Event not predicted

Possible explanation assuming

(sensor-repair-plan (planner (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location sensors)
(with sensor-supplies))))

Event not predicted

- Possible explanation assuming 3

(move-plan (planner (vehicle (name (robot-i))))
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(from (prox (location supply-room)))
(to (prox (location sensors)))
(with sensor-supplies))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(load-cart (actor (vehicle (name (robot-i))))
(location supply-room)
(with sensor-supplies)
(using (inventory (location sensors))))))

Event not predicted

Possible explanation assuming

(get-supply-plan (planner (vehicle (name (robot-i))))
(location supply-room)
(supplies sensor-supplies)
(inventory sensors))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(from sensors)
(to supply-room)
(with (knowledge

(inventory sensor-supplies))))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location sensors)))
(to (prox (location supply-room)))
(with (knowledge (inventory sensor-supplies))))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(do (actor (vehicle (name (robot-i))))
(inventory sensors))))

Event not predicted
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Possible explanation assuming

(inventory-plan (planner (vehicle (name (robot-i))))
(location sensors))

Event not predicted %

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location sensors)
(with nil))))

Event not predicted .

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location sensors))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-i))))
U- (maintain sensors)

(with sensor-supplies))

Adding inference chain to data base .- .

Combining Plans

Sorting Plans by value

Planning

(action (actor (vehicle (name (robot-i))))

(objective (return (location base))))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective E',

(prox (actor (vehicle (name (robot-i))))
(location base)
(with nil))))
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Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location base)))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-i))))
(objective (return (location base))))

Adding inference chain to data base

The database contains:

(((move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location filling-station)))
(with nil)) (aO0005)

mOO007)
((grasp-plan (planner (vehicle (name (robot-i))))

(object nozzle-2)
(location filling-station)) (a0005)

mOO008)
((move-plan (planner (vehicle (name (robot-i))))

(from (prox (location filling-station)))
(to (prox (location aircraft)))
(with nozzle-2)) (aO0005)

m00009)
((refuel-plan (planner (vehicle (name (robot-i))))

(object aircraft)
(with nozzle-2)) (a0005)

nil)
((move-plan (planner (vehicle (name (robot-i))))

(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil)) (aOO010)

mOO012)
((grasp-plan (planner (vehicle (name (robot-i))))

(object engine-tools)
(location work-bench)) (aOO010) .-

mOO013)
((move-plan (planner (vehicle (name (robot-i))))

(from (prox (location work-bench)))
(to (prox (location aircraft)))
(with engine-tools)) (aOO010)

m 00014)
((repair-engine-plan (planner (vehicle (name (robot-i))))

(object engine)
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(location aircraft)
(with engine-tools)) (aOOOiO)

nil)
((move-plan (planner (vehicle (name (robot-i))))

(from (prox (location current-location))) L
(to (prox (location work-bench)))
(with nil)) (aO0015)

mOOO 17)
((inventory-plan (planner (vehicle (name (robot-i))))

(location work-bench)) (a00015)
mOO018)

((move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location sensors)))
(with nil)) (a00022)

mOO024)
((inventory-plan (planner (vehicle (name (robot-i))))

(location sensors)) (a00022)
m00025)

((move-plan (planner (vehicle (name (robot-i))))
(from (prox (location sensors)))
(to (prox (location supply-room)))
(with (knowledge (inventory sensor-supplies))) 

.

(also (knowledge (inventory work-bench-supplies))))
(aO0015 a00022)
m00026)
((get-supply-plan (planner (vehicle (name (robot-i))))

(location supply-room)
(supplies sensor-supplies)
(inventory sensors)) (a00022)

M00027)
((get-supply-plan (planner (vehicle (name (robot-i))))

(location supply-room)
(supplies work-bench-supplies)
(inventory work-bench)) (aOO015)

mOO020)
((move-plan (planner (vehicle (name (robot-i))))

(from (prox (location supply-room)))
(to (prox (location work-bench)))
(with work-bench-supplies)) (aO0015)

mOO021)
((replenish-work-bench-plan

(planner (vehicle (name (robot-i))))
(maintain work-bench)
(with work-bench-supplies)) (a0015)

nil)
((move-plan (planner (vehicle (name (robot-i))))

(to (prox (location sensors)))
(with sensor-supplies)
(from (prox (location work-bench)))) (a00022)

m00028)
((sensor-repair-plan (planner (vehicle (name (robot-i))))

.. (maintain sensors)
(with sensor-supplies)) (a00022)

nil)
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((move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location base)))
(with nil)) (a00029)

nil))

Refining the Plans

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location filling-station)))
(with nil)) *1

L ~~Ref ining ""-

(grasp-plan (planner (vehicle (name (robot-i))))
(object nozzle-2)
(location filling-station)) >1

R e f ining ,,-..

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location filling-station)))
(to (prox (location aircraft)))
(with nozzle-2))

Refining

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-2))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil)) ,

Refining

(grasp-plan (planner (vehicle (name (robot-i))))
(object engine-tools)
(location work-bench))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location work-bench)))
(to (prox (location aircraft))) r
(with engine-tools))

Refining
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* (repair-engine-plan (planner (vehicle (name (robot-i))))
(object engine)

(location aircraft)
(with engine-tools))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil))

Refining

(inventory-plan (planner (vehicle (name (robot-i))))
(location work-bench)) &

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location sensors)))
(with nil))

Refining

*(inventory-plan (planner (vehicle (name (robot-i))))
(location sensors))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location sensors)))
(to (prox (location supply-room)))
(with (knowledge (inventory sensor-supplies))).,-
(also (knowledge (inventory work-bench-supplies))))

Refining

(get-supply-plan (planner (vehicle (name (robot-i))))
(location supply-room)
(supplies sensor-supplies)
(inventory sensors))

Refining

(get-supply-plan (planner (vehicle (name (robot-i))))
(location supply-room) 7
(supplies work-bench-supplies)
(inventory work-bench))

Refining

(move-plan (planner (vehicle (name (robot-i))))
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(from (prox (location supply-room)))(to (prox (location work-bench)))

(with work-bench-supplies)) om

Refining

(replenish-work-bench-plan
(planner (vehicle (name (robot-i))))

(maintain work-bench)
(with work-bench-supplies))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(to (prox (location sensors))).."
(with sensor-supplies) C.-
(from (prox (location work-bench))))

Refining

(sensor-repair-plan (planner (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location base)))
(with nil))

The database now contains:

(((executive (tell (route-planner))
(start current-location)
(goal filling-station)) (a00005)

mOOO 32)
((executive (tell (scheduler))

(move route)) (aO0005)
nil)

((executive (tell (sensor))
(locate nozzle-2)) (a00005)

mOO0 34)
((executive (tell (arm))

(open hand)) (a00005)
mOO0 35)

((executive (tell (arm))
(move nozzle-2)) (aO0005)

mOO036)
((executive (tell (arm))

(close hand)) (a00005)
mOO 037)

((executive (tell (arm))
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(retract arm)) (aO0005)
nil)

((executive (tell (route-planner))
(start filling-station)
(goal aircraft)) (aO0005)

m00039)
((executive (tell (scheduler))

(move route)) (aO0005)
nil)

((executive (tell (sensor))
(locate aircraft)) (a00005)

mOO041) •

((executive (tell (sensor))
(locate filler-cap)) (aO0005)

m00042)
((executive (tell (arm))

(open hand)) (aO0005)
m00043)

((executive (tell (arm))
(move filler-cap)) (aO0005)

m00044)
((executive (tell (arm))

(close hand)) (aO0005)
m00045)

((executive (tell (arm))
(rotate arm)) (aO0005)

m00046)
((executive (tell (arm))

(retract arm)) (aO0005)
mOO047)

((executive (tell (arm))
(insert nozzle-2)) (aO0005)

nil)
((executive (tell (route-planner))

(start current-location)
(goal work-bench)) (aO0010)

m00049)
((executive (tell (scheduler))

(move route)) (aOO010)
nil)

((executive (tell (sensor))
(locate engine-tools)) (aOOOO)

mOO051)
((executive (tell (arm))

(open hand)) (aO0010)
m00052)

((executive (tell (arm))
(move engine-tools)) (aOOOIO)

m00053)
((executive (tell (arm))

(close hand)) (aOO010)
m00054)

* . . ((executive (tell (arm))
(retract arm)) (aOO010)

nil)
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((executive (tell (route-planner)) 4

(start work-bench)
(goal aircraft)) (aO0010)

.00056)
((executive (tell (scheduler))

(move route)) (aOOOO)
nil)

((executive (tell (sensor))
(locate engine)) (a00010)

oo058)
((executive (tell (arm))

(open engine)) (aO0010)
mOO059)

((executive (tell (arm))
(repair engine)) (aO0010)

nil)
((executive (tell (route-planner))

(start current-location)
(goal work-bench)) (aO0015)

mOO061)
((executive (tell (scheduler))

(move route)) (aO0015)
nil)

((executive (tell (blackboard))
(recall (inventory (location work-bench))))

(aO00015)
m00063)
((executive (tell (scheduler))

(do (inventory (location work-bench)))) (a00015)
nil)

((executive (tell (route-planner))
(start current-location)
(goal sensors)) (a00022)

m00065)
((executive (tell (scheduler))

(move route)) (a00022)
nil)

((executive (tell (blackboard))
(recall (inventory (location sensors)))) (a00022)

m00067) "

((executive (tell (scheduler)) 006
(do (inventory (location sensors)))) (aO0022)

nil)
((executive (tell (route-planner))

(start sensors)
(goal supply-room)) (a.00015 a00022)

m00069)
((executive (tell (scheduler))

(move route)) (aO0015 a00022)
nil)

((executive (tell (sensor))
(locate sensor-supplies)) (a00022)

mOO071)
((executive (tell (blackboard))

(recall (inventory (location sensors)))) (a00022)
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sO 0072)
((executive (tell (scheduler))

(load cart)
(with sensor-supplies)) (a00022)

nil)
((executive (tell (sensor))

(locate work-bench-supplies)) (aO0015)
mOOo 74)

((executive (tell (blackboard))
(recall (inventory (location work-bench))))

(aO0015) }

m00075)
((executive (tell (scheduler))

(load cart)
(with work-bench-supplies)) (aO0015)

nil)
((executive (tell (route-planner))

(start supply-room)
(goal work-bench)) (aOO015)

m00077)
((executive (tell (scheduler))

(move route)) (a00015)
nil)

((executive (tell (blackboard))
(recall (inventory (location work-bench))))

(aOO015)
m00079)
((executive (tell (scheduler))

(get work-bench-supplies) A.
(from cart)) (a00015)

mOO080)
*((executive (tell (scheduler))

(put work-bench-supplies)
(on work-bench)) (aO0015)I nil)

((executive (tell (route-planner))
(start work-bench)
(goal sensors)) (a00022)

m00082)
((executive (tell (scheduler))

(move route)) (a00022)
nil)

((executive (tell (blackboard))
(recall (inventory (location sensors)))) (a00022)

mOO084)
((executive (tell (scheduler))

(get sensor-supplies)
(from cart)) (a00022)

m00085)
((executive (tell (scheduler))

(repair sensors)
(with sensor-supplies)) (a00022) r

nil)
((executive (tell (route-planner))

(start current-location)
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(goal base)) (a00029)
mOO87)

((executive (tell (scheduler))
(move route)) (a00029)

nil))

Move Robot
Start Location: base
Destination: filling-station

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 1 **** -

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 2 ****

New coordinates are (0.5 0.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 3 ****

New coordinates are (1.0 0.0)

New route step

New heading has been computed
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Turn left 45 degrees

Reorient Robot 45 degrees

**** Time step: 4 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 5 ****

New coordinates are (1.314835507758704 0.3884309501755995)

Course deviation -- calling errorhandler

New heading has been computed

Turn right -9.227130622162847 degrees

Reorient Robot -9.227130622162847 degrees

**** Time step: 6 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 7 ****

New coordinates are (1.687854361240208 0.7213828009698912)

New route step

New heading has been computed

Turn left 3.227130622162847 degrees
Reorient Robot 3.227130622162847 degrees

**** Time step: 8 ****

Robot moves forward: 0.5 meters

Encoder updates memory
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Sonar updates memory

Gyro updates memory

.*** Time Step: 9 ****

New coordinates are (2.334723082637353 1.371430286796524)

Course deviation -- calling errorhandler

New heading has been computed

Turn right -4.603079295651878 degrees

Reorient Robot -4.603079295651878 degrees

**** Time step: 10 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 11 ****

New coordinates are (2.673335159021275 1.739318668954712)

New route step

New heading has been computed

Turn right -47.39692070434812 degrees

Reorient Robot -47.39692070434812 degrees

**** Time step: 12 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 13 **

New coordinates are (3.5 2.0)
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Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 14 ****

New coordinates are (4.0 2.0)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 15 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 16 ****

New coordinates are (4.5 2.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 17 ****

New coordinates are (5.0 2.0)

New route step

New heading has been computed

Continue same heading for new segment
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**** Time step: 18 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

S*** Time Step: 19 ****

New coordinates are (5.5 2.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

S*** Time Step: 20 ****

N New coordinates are (6.0 2.0)

New route step

New heading has been computed

Continue same heading for new segment

•*** Time step: 21 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*** Time Step: 22 ****

New coordinates are (6.5 2.0)

Robot moves forward: 0.5 meters
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Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 23 ****

New coordinates are (7.0 2.0)

New route step

New heading has been computed

Turn left 90.0 degrees
Reorient Robot 90.0 degrees

**** Time step: 24 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

Le **** Time Step: 25 ****

New coordinates are (7.000398163355367 2.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 26 ****

New coordinates are (7.000796326710733 2.999999682931835)

Goal achieved

Remaining resources: 78

Current location: filling-station
Coordinates: (7.0 3.0)
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N . Robot Fuel Critically Low

Looking for a meta-plan for Policy:

(policy (planner robot)
(objective (plan (maximize *low-robot-fuel-task*))))

Possible explanation assuming

(accomplish (save-top-level-tasks nil)
(clear-globals some)
(process-cda *low-robo t-fuel-task*)
(process-cds *return-suspend-action*)
(sort *task-plans*)
(refine nil) L
(restore-top-level-tasks nil))

A meta-plan for this policy is:

((save-top-level-tasks nil) (clear-globals some)
(process-cds

*low-robo t-fuel-task*)
(process-cds

*re turn-suspend-ac tion*)
(sort *task-plans*)
(refine nil)
(restore-top-level-tasks nil))

Planning

(action (actor (vehicle (name (robot-i))))

(correct (state (low robot-fuel))))

Event not predicted

Possible explanation assuming L.
(refuel-robot-plan (planner (vehicle (name (robot-i))))

(correct (state (low robot-fuel)))
(with suspended-state))

Event not predicted L

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
(location robot-fuel)
(with suspended-state))))
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Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location suspend-location)))
(to (prox (location robot-fuel)))
(with suspended-state))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective (suspend (task current-task))))

Event not predicted

Possible explanation assuming

(suspend-state-plan (planner (vehicle (name (robot-i)))))

Event predicted from

(action (actor (vehicle (name (robot-i))))
(correct (state (low robot-fuel))))

Adding inference chain to data base

Planning

(action (actor (vehicle (name (robot-i))))
(objective (return (location suspend-location))))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective L

(prox (actor (vehicle (name (robot-i))))
(location suspend-location)
(with nil))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location suspend-location))) -
(with nil))

Event predicted from
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* .

(action (actor (vehicle (name (robot-i))))
(objective (return (location suspend-location)))) -i

Adding inference chain to data base

The database contains:

(((suspend-state-plan (planner (vehicle (name (robot-i)))))
(a095)
m00097)
((move-plan (planner (vehicle (name (robot-i))))

(from (prox (location suspend-location)))
(to (prox (location robot-fuel)))
(with suspended-state)) (a00095) 1

m00098)
((refuel-robot-plan (planner (vehicle (name (robot-i))))

(correct (state (low robot-fuel)))
(with suspended-state)) (a00095)

nil)
((move-plan (planner (vehicle (name (robot-i))))

(from (prox (location current-location)))
(to (prox (location suspend-location)))
(with nil)) (a00099)

nil))-_..

.- Sorting Plans by value

Refining the Plans

Refining

(suspend-state-plan (planner (vehicle (name (robot-i)))))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location suspend-location)))
(to (prox (location robot-fuel)))
(with suspended-state))

Refining

(refuel-robot-plan (planner (vehicle (name (robot-i))))
(correct (state (low robot-fuel)))
(with suspended-state))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location suspend-location)))
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(with nil))

The database now contains:

(((executive (tell (blackboard))
(save state)) (a00095)

nil)
((executive (tell (route-planner))

(start suspend-location)
(goal robot-fuel)) (a00095)

mOO103)
((executive (tell (scheduler))

(move route)) (a00095)
nil)

((executive (tell (sensor))
(locate refuel-socket)) (a00095)

m00105)
((executive (tell (arm))

(move refuel-socket)) (a00095)
moo106)

((executive (tell (arm))
(insert robot-finger)) (a00095)

m00107)
((executive (tell (scheduler))

(robot refueled)) (a00095)
nil ) "

((executive (tell (route-planner))
(start current-location)
(goal suspend-location)) (a00099)

m00109)
((executive (tell (scheduler))

(move route)) (a00099)
nil))

Move Robot
Start Location: filling-station
Destination: robot-fuel

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 27 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed
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Turn right -180.0 degrees
p" "- Reorient Robot -180.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory

,* Gyro initializes memory

**** Time step: 28 ****

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory 
je

Sonar updates memory
Gyro updates memory

**** Time Step: 29 ****

New coordinates are (7.000398163355367 2.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 30 ****

New coordinates are (7.000796326710733 2.000000317068165)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 31 ****

New coordinates are (7.0011944900661 1.500000475602248)
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Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 32 ****

New coordinates are (7.001592653421467 1.000000634136331)

Goal achieved

Remaining resources: 73
Current location: robot-fuel
Coordinates: (7.0 1.0)

Sensors have located refuel-socket

Arm moved to refuel-socket

robot-finger has been inserted

Robot Refueled
Current resources: 1000

Move Robot
Start Location: robot-fuel
Destination: filling-station

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 33 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 180.0 degrees
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Rerin Robo 180 f.0 degrees f f - ---

Re-initalize em.ry

Encode initalizesme.or

Sonarinitilizesmemor

~~*Gyr Reinitializes memory

***Time stop: 34 **

h Confirm initialization

Initialization Confirmed

Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 35 **

New coordinates are (7.000398163355367 1.499999841465917) f

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 36 **

New coordinates are (7.000796326710733 1.999999682931835)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 37 **

New coordinates are (7.0011944900661 2.499999524397752)
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Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 38 ****

New coordinates are (7.001592653421467 2.999999365863669)

Goal achieved

Remaining resources: 995
Current location: filling-station
Coordinates: (7.0 3.0)

Sensors cannot Locate: nozzle-2

Task Failure Detected

3 Failed Function: (aO0005)

Modifying Policy

Looking for a meta-plan for Policy:

(policy (planner robot)
(objective (plan (failed a00005))))

Possible explanation assuming

(accomplish (abandon aO0005)
(move-to-top-level nil)
(clear-globals some)
(extern-plan-fail a00005)
(sort *task-plans*)
(push-new-plan nil)
(refine nil))

A meta-plan for this policy is:

((abandon aOO005) (move-to-top-level nil)
(clear-globals some)
(extern-plan-fail a00005)
(sort *task-plans*)
(push-new-plan nil)
(refine nil))
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Abandoning Plan a00005

Seeking Meta-Plan for:

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))

Possible explanation assuming

(accomplish
(alternative-scenario

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-2))))

Trying Alternative Scenario

Possible explanation assuming

(accomplishj (justify-alternative

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-3))))

Planning

(action (actor (vehicle (name (robot-i))))
(refuel aircraft)
(with nozzle-3))

Event not predicted

Possible explanation assuming

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-3))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(prox (actor (vehicle (name (robot-i))))
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(location aircraft)
(with nozzle-3))))

Event not predicted I

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location filling-station-2)))
(to (prox (location aircraft)))
(with nozzle-3))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
(objective

(grasp (object nozzle-3)
(location filling-station-2))))

Event not predicted

Possible explanation assuming

(grasp-plan (planner (vehicle (name (robot-I))))
(object nozzle-3)
(location filling-station-2))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-i))))
I (objective

(prox (actor (vehicle (name (robot-i))))
(location filling-station-2)
(with nil))))

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location filling-station-2)))
(with nil))

Event predicted from

(action (actor (vehicle (name (robot-I))))
(refuel aircraft)
(with nozzle-3))

Adding inference chain to data base
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Sorting Plans by value

Refining the Plans

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location filling-station-2)))
(with nil))

Refining

(grasp-plan (planner (vehicle (name (robot-i))))
(object nozzle-3)
(location filling-station-2))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location filling-station-2)))
(to (prox (location aircraft)))
(with nozzle-3))

Refining

(refuel-plan (planner (vehicle (name (robot-i))))
(object aircraft)
(with nozzle-3))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil)) L

Refining

(grasp-plan (planner (vehicle (name (robot-i))))
(object engine-tools)
(location work-bench))

Refining

* (move-plan (planner (vehicle (name (robot-i))))
(from (prox (location work-bench)))
(to (prox (location aircraft)))
(with engine-tools))

Refining
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(repair-engine-plan (planner (vehicle (name (robot-i))))
(object engine)
(location aircraft)
(with engine-tools))

Refining
.- t i

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil))

Refining

(inventory-plan (planner (vehicle (name (robot-i))))
(location work-bench))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location))) '."
(to (prox (location sensors)))
(with nil))

Refining

(inventory-plan (planner (vehicle (name (robot-i))))

(inentry-lan(location sensors))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location sensors)))
(to (prox (location supply-room)))
(with (knowledge (inventory sensor-supplies)))
(also (knowledge (inventory work-bench-supplies))))

Refining

(get-supply-plan (planner (vehicle (name (robot-i))))
(location supply-room)
(supplies sensor-supplies)
(inventory sensors))

RefiningL

(get-supply-plan (planner (vehicle (name (robot-i))))
(location supply-room)
(supplies work-bench-supplies)
(inventory work-bench))

. .Refining

(move-plan (planner (vehicle (name (robot-i))))
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(from (prox (location supply-room)))

(to (prox (location work-bench)))
2 ,(with work-bench-supplies))

Refining

(replenish-work-bench-plan
(planner (vehicle (name (robot-i))))

(maintain work-bench)
(with work-bench-supplies))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(to (prox (location sensors)))
(with sensor-supplies)
(from (prox (location work-bench))))

Refining

(sensor-repair-plan (planner (vehicle (name (robot-i))))
(maintain sensors)
(with sensor-supplies))

Refining

(move-plan (planner (vehicle (name (robot-i))))
(from (prox (location current-location)))
(to (prox (location base)))
(with nil))

The database now contains:

((executive (tell (route-planner))
(start current-location)
(goal filling-station-2)) (a00125)

mOO131)
((executive (tell (scheduler))

(move route)) (a00125)
nil)

((executive (tell (sensor))
(locate nozzle-3)) (a00125)

mOO133)
((executive (tell (arm))

(open hand)) (a00125)
m00134)

((executive (tell (arm))
(move nozzle-3)) (a00125)

mOO1 35)
((executive (tell (arm))

(close hand)) (a00125)
mOO136)

((executive (tell (arm))
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(retract arm)) (a00125)
nil)

" . ((executive (tell (route-planner))
(start filling-station-2)
(goal aircraft)) (a00125) .

mOO138)
((executive (tell (scheduler))

(move route)) (a00125)
nil)

((executive (tell (sensor))
(locate aircraft)) (a00125)

mOO140)
((executive (tell (sensor))

(locate filler-cap)) (a00125)
mOO141)

((executive (tell (arm))
(open hand)) (a00125)

mOO142)
((executive (tell (arm))

(move filler-cap)) (a00125)
mOO143)

((executive (tell (arm))
(close hand)) (a00125)

mOO 144)
((executive (tell (arm))

(rotate arm)) (a00125)
mOO145)

((executive (tell (arm))
(retract arm)) (a00125)

mOO146)
((executive (tell (arm))

(insert nozzle-3)) (a00125)
nil)

((executive (tell (route-planner))
(start current-location)
(goal work-bench)) (aOOOO)

mOO 148)
((executive (tell (scheduler))

(move route)) (aOO010)
nil)

((executive (tell (sensor))
(locate engine-tools)) (aOOOO)

m00150)
((executive (tell (arm))

(open hand)) (aOO010)
mOO151)

((executive (tell (arm))
(move engine-tools)) (aOO010)

mO 152)
((executive (tell (arm))

(close hand)) (aO0010)
m00153)

((executive (tell (arm))
(retract arm)) (aO0010)

nil)
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((executive (tell (route-planner))
(start work-bench)
(goal aircraft)) (aOOOO)

m00155)
((executive (tell (scheduler)) 9

(move route)) (a0010)
nil)

((executive (tell (sensor))
(locate engine)) (aOOO)

((executive (tell 
(arm)) m.5

(open engine)) (aOO010)
mOO158)

((executive (tell (arm))
(repair engine)) (a0010)

nil)
((executive (tell (route-planner))

(start current-location)
(goal work-bench)) (aO0015)

moo 160)
((executive (tell (scheduler))

(move route)) (aO0015)
nil)

((executive (tell (blackboard))
(recall (inventory (location work-bench))))

(aOO015)
-00162)
((executive (tell (scheduler))

(do (inventory (location work-bench)))) (aOO015)
nil)

((executive (tell (route-planner))
(start current-location) 444_

(goal sensors)) (a00022) 4

m00164)
((executive (tell (scheduler))

(move route)) (a00022)
nil)

((executive (tell (blackboard))
(recall (inventory (location sensors)))) (a00022)

mOO166)
((executive (tell (scheduler))

(do (inventory (location sensors)))) (a00022)
nil)

((executive (tell (route-planner))
(start sensors)
(goal supply-room)) (aO0015 a00022)

mOO168)
((executive (tell (scheduler))

(move route)) (aO0015 a00022) V
nil)

((executive (tell (sensor))
(locate sensor-supplies)) (a00022)

mOO1 70)
((executive (tell (blackboard))

(recall (inventory (location sensors)))) (a00022)
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mOO171)
((executive (tell (scheduler))

(load cart)
(with sensor-supplies)) (a00022)

nil)
((executive (tell (sensor))

(locate work-bench-supplies)) (aO0015)
mOO173)

((executive (tell (blackboard))
(recall (inventory (location work-bench))))

(aO0015)
mOO174)
((executive (tell (scheduler))

(load cart)
(with work-bench-supplies)) (aO0015)

nil)
((executive (tell (route-planner))

(start supply-room)
(goal work-bench)) (aO0015)

m00176)
((executive (tell (scheduler))

(move route)) (aO0015)
nil)

((executive (tell (blackboard))
(recall (inventory (location work-bench))))

(a00015)
m00178)
((executive (tell (scheduler))

(get work-bench-supplies)
(from cart)) (a0015)

m00179)
((executive (tell (scheduler))

(put work-bench-supplies)
(on work-bench)) (a0015)

nil)
((executive (tell (route-planner))

(start work-bench)
(goal sensors)) (a00022)

M00181)
((executive (tell (scheduler))

(move route)) (a00022) -
nil)

((executive (tell (blackboard))
" (recall (inventory (location sensors)))) (a00022)

m00183)
((executive (tell (scheduler))

(get sensor-supplies) L
(from cart)) (a00022)

m00184)
((executive (tell (scheduler))

(repair sensors)
(with sensor-supplLes)) (a00022)- ... nil) E

((-executive (tell (route-planner)) nil)
(start current-locatLon)
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*.:(eetv (goal base)) (a00029)'" ~mOO186 ) ..:

((executive (tell (scheduler))
(move route)) (a00029)

nil))

Move Robot
Start Location: filling-station
Destination: filling-station-2

-y Encoder initializes memory
Sonar initializes memory
Gyro initializes memory ,-.'..

**** Time step: 39 **** L

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn right -90.0 degrees
Reorient Robot -90.0 degrees

Re-initialize memory

EncnAr initializes memory
Sonar initializes memory
Gyro initializes memory
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**** Time step: 40 ****

-* Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

•*** Time Step: 41 ****

New coordinates are (7.5 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 42 ****

New coordinates are (8.0 3.0)

New route step

New heading has been computed

Continue same heading for new segment

•*** Time step: 43 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory ,.'I

•*** Time Step: 44 **** -'

New coordinates are (8.5 3.0)
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Robot Roves forward: 0.5 meters

Encoderupdate.memor

Enodr updates memory
Syoa updates memory

***Time Step: 45 **

New coordinates are (9.0 3.0)

Goal achieved

Remaining resources: 990
Current location: filling-statiou-2
Coordinates: (9.0 3.0)

Sensors have located nozzle-3

Hand opened

Arm moved to nozzle-3

Hland closed

Arm retracted

Move Robot
Start Location: filling-station-2
Destination: aircraft

Encoder Initializes memory
Sonar initializes memory
Gyro initializes memory

***Time step: 46 **

Confirm initialization

HeadiLng error in initialization

Calling Error Handler

New heading has been computed
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Turn left 90.0 degrees
Reorient Robot 90.0 degrees

Re-initialize memory

Encoder initializes memory
' Sonar initializes memory

Gyro initializes memory

•*** Time step: 47 ****

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

• *** Time Step: 48 ****

New coordinates are (9.000398163355367 3.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory "-

Sonar updates memory
Gyro updates memory

*** Time Step: 49 ****

New coordinates are (9.000796326710733 3.999999682931835)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 50 ****

Robot moves forward: 0.5 meters
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Encoder updates memory

Sonar updates memory

**** Time Step: 51 ****

New coordinates are (9.000398163355367 4.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 52 ****

New coordinates are (9.000796326710733 4.999999682931835)

New route step

New heading has been computed

Turn left 90.0 degrees
Reorient Robot 90.0 degrees

**** Time step: 53 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 54 ****

New coordinates are (8.50000063413623 5.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory

"- Gyro updates memory
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**** Time Step: 55 ***

New coordinates are (8.00000126827246 5.001592652916487)

New route step .L

New heading has been computed

Continue same heading for new segment

**** Time step: 56 ****

-Robot moves forward: 0.5 meters V

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 57 **

New coordinates are (7.50000063413623 5.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 58 ****

New coordinates are (7.00000126827246 5.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 59 ****

r
Robot moves forward: 0.5 meters
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Encoder updates memory
Sonar update. memoryWO
Gyro updates memory

***Time Step: 60 **

New coordinates are (6.50000063413623 5.000796326458243)

I Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 61 **

New coordinates are (6.00000126827246 5.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

***Time step: 62 **

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 63 **

New coordinates are (5.50000063413623 5.000796326458243)

Robot moves forward: 0.5 meters P-

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 64 **
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New coordinates are (5.00000126827246 5.001592652916487)

New route step E

New heading has been computed

Continue same heading for new segment

***Time step: 65 **

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 66 ***.

New coordinates are (4.50000063413623 5.000796326458243)

COO Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 67 ****

New coordinates are (4.00000126827246 5.001592652916487)

Goal achieved

Remaining resources: 974
Current location: aircraft
Coordinates: (4.0 5.0)

Sensors have located aircraft

Sensors have located filler-cap

Hand opened
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Arm moved to filler-cap

Hand closed

Arm rotated

Arm retracted

nozzle-3 has been inserted

Move Robot
Start Location: aircraft
Destination: work-bench

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

•*** Time step: 68 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn right -270.0 degrees
Reorient Robot -270.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

•*** Time step: 69 ****

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters
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Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 70 ****

New coordinates are (4.000398163355367 4.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 71 ****

New coordinates are (4.000796326710733 4.000000317068165)

New route step

New heading has been computed

Turn left 270.0 degrees

Reorient Robot 270.0 degrees

**** Time step: 72 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 73 **** L

New coordinates are (3.50000063413623 4.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory Ir

" - **** Time Step: 74 ****
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New coordinates are (3.00000126827246 4.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 75 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 76 ****

New coordinates are (2.50000063413623 4.000796326458243)

* 4~Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 77 ****

New coordinates are (2.00000126827246 4.001592652916487) "'

New route step
L

New heading has been computed

Turn right -270.0 degrees
Reorient Robot -270.0 degrees

**** Time step: 78 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
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Gyro updates memory

*..:::" **** Time Step: 79 ****

New coordinates are (2.000398163355367 3.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

•*** Time Step: 80 ****

New coordinates are (2.000796326710733 3.000000317068165)

New route step

New heading has been computed

Continue same heading for new segment

•*** Time step: 81 ****

Robot moves fdrward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 82 ****

New coordinates are (2.000398163355367 2.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

•*** Time Step: 83 ****

New coordinates are (2.000796326710733 2.000000317068165)
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Goal achieved

Remaining resources: 961
Current location: work-bench
Coordinates: (2.0 2.0)

Sensors have located engine-tools

Hand opened

Arm moved to engine-tools

Hand closed

Arm retracted

Move Robot
Start Location: work-bench
Destination: aircraft

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 84 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 180.0 degrees
Reorient Robot 180.0 degrees

Re-initialize memory

Encoder initializes memory "'
Sonar initializes memory
Gyro initializes memory

**** Time step: 85 ****

Confirm initialization
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Initialization Confirmed
-: . Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 86 **** -,

New coordinates are (2.000398163355367 2.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 87 **

IO .-New coordinates are (2.000796326710733 2.999999682931835)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 88 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory *
Gyro updates memory

**** Time Step: 89 ****

New coordinates are (2.000398163355367 3.499999841465917) r

Robot moves forward: 0.5 meters
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Encoder updates memory
Sonar updates memory
Gyro updates memory

~**Time Step: 90 ** S

New coordinates are (2.000796326710733 3.999999682931835)

New route step

New heading has been computed

Turn right -90.0 degrees

Reorient Robot -90.0 degrees

.-". Time step: 91 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

.*** Time Step: 92 **** "

New coordinates are (2.5 4.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

•*** Time Step: 93 ****

New coordinates are (3.0 4.0) 1,

Net. route step

New heading has been computed

Continue same heading for new segment
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**** Time step: 94 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 95 ****

New coordinates are (3.5 4.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 96 ****

New coordinates are (4.0 4.0)

New route step

New heading has been computed

Turn left 90.0 degrees
Reorient Robot 90.0 degrees

**** Time step: 97 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 98 ****

New coordinates are (4.000398163355367 4.499999841465917)

Robot moves forward: 0.5 meters
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Encoder updates memory
Sonar updates memory

* """ Gyro updates memory

**** Time Step: 99 ****

New coordinates are (4.000796326710733 4.999999682931835)

Goal achieved

Remaining resources: 948
Current location: aircraft
Coordinates: (4.0 5.0)

Sensors have located engine

Engine housing opened

Engine repaired

kJ Move Robot
Start Location: aircraft
Destination: work-bench

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 100 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn right -180.0 degrees
Reorient Robot -180.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 101 ****
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Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 102 ****

New coordinates are (4.000398163355367 4.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 103 ****

Mew coordinates are (4.000796326710733 4.000000317068165)

New route step

New heading has been computed

Turn left 270.0 degrees
Reorient Robot 270.0 degrees

**** Time step: 104 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 105 ****

New coordinates are (3.50000063413623 4.000796326458243)
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Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 106 ****

New coordinates are (3.00000126827246 4.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 107 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 108 ****

New coordinates are (2.50000063413623 4.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 109 ****

New coordinates are (2.00000126827246 4.001592652916487)

New route step

New heading has been computed
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Turn right -270.0 degrees
-* Reorient Robot -270.0 degrees

**** Time step: 110 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 111 ****

New coordinates are (2.000398163355367 3.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 112 ****

New coordinates are (2.000796326710733 3.000000317068165)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 113 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 114 ****

New coordinates are (2.000398163355367 2.500000158534083) r

Robot moves forward: 0.5 meters
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"'*-' Encoder updates memory -"

Sonar updates memory
Gyro updates memory

**** Time Step: 115 ****

New coordinates are (2.000796326710733 2.000000317068165)

Goal achieved

Remaining resources: 935
Current location: work-bench
Coordinates: (2.0 2.0)

Work-bench inventory recalled from Blackboard

Work-bench inventory accomplished

Move Robot
Start Location: work-bench
Destination: sensors

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 116 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 180.0 degrees
Reorient Robot 180.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 117 ****
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Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

* Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 118 ****

New coordinates are (2.000398163355367 2.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory V

Gyro updates memory

**** Time Step: 119 ****

New coordinates are (2.000796326710733 2.999999682931835)

New route step

New heading has been computed

Turn right -90.0 degrees

Reorient Robot -90.0 degrees

**** Time step: 120 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory L_

**** Time Step: 121 ****

New coordinates are (2.5 3.0)
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Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 122 ****

New coordinates are (3.0 3.0)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 123 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 124 ****

New coordinates are (3.5 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 125 ****

New coordinates are (4.0 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory

' Sonar updates memory
Gyro updates memory
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**** Time Step: 126 ****

New coordinates are (4.5 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 127 ****

New coordinates are (5.0 3.0)

Goal achieved

Remaining resources: 925
Current location: sensors
Coordinates: (5.0 '.0)

-- Sensor inventory recalled from Blackboard

Sensor inventory accomplished

- . Move Robot
Start Location: sensors
Destination: supply-room

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

•*** Time step: 128 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 180.0 degrees
Reorient Robot 180.0 degrees

183



WHO-0163 956 AUTONOMOUS VEHICLE MISSION PLANNINO USING Al 3/3
(ARTIFICIAL INTELLIGENCE) TE.. (U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON RF9 OH SCHOOL OF ENGI..

UNCLSSIIEDS ESTOKBRDGEDEC 85 AFIT/OE/ENG/85D-45 F/G 6/4 H

'IEEE".mom

VN



.R |

Sll lIS,__ -.

-o-

16

NIOA L BUEUOSADRS-16-

"-.-. .. .--.... ,- -.-.. . . ..,. ,. -- ., . ., ...,. .,. , , .•% -..,.- , .. .-. .. ..,. , -.,I,, i .i ', ..- ..,.
" * - °o o% .O. ° . .. ' ..o .° . . . O.o_'. .o .' -. , . o . * '' .- '° -. ° .. . -.,1 4% .. . .', ' .' . o-- .-

',. = , _' o .,. . ., °°.,,,,.. ,,.° ,.° 11111 .°. IIIIIo 11111- -.." '.. . , . .' '° , •°'. , ,' .o .



Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

***Time step: 129 **

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

STime Step: 130 **

New coordinates are (4.50000063413623 3.000796326458243)

kow Robot moves forward: 0.5 meters

Encoderupdate memor

Enodr updates memory
Syoa updates memory

* Time Step: 131 **

New coordinates are (4.00000126827246 3.001592652916487)

aNew route step

New heading has been computed

Turn right -270.0 degrees
Reorient Robot -270.0 degrees

**~Time step: 132 **

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
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Gyro updates memory

*.- " **** Time Step: 133 ****

New coordinates are (4.000398163355367 2.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory

Gyro updates memory

S*** Time Step: 134 ****

New coordinates are (4.000796326710733 2.000000317068165)

New route step

New heading has been computed

*Continue same heading for new segment

S*** Time step: 135 ***'

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

S*** Time Step: 136 ****

New coordinates are (4.000398163355367 1.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

S*** Time Step: 137 **** r -

New coordinates are (4.000796326710733 1.000000317068165)
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.- Goal achieved

Remaining resources: 917
Current location: supply-room
Coordinates: (4.0 1.0)

Sensors have located sensor-supplies

Sensor inventory recalled from Blackboard

Cart loaded with sensor-supplies

Sensors have located work-bench-supplies

Work-bench inventory recalled from Blackboard

Cart loaded with work-bench-supplies

Move Robot
Start Location: supply-room
Destination: work-bench

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

**** Time step: 138 ****

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 270.0 degrees
Reorient Robot 270.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory
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Time step: 139 ****
I **

.'. .-7. Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 140 ****

New coordinates are (3.5000006341362^ 1.000796326458243)

Robot moves forward: 0.5 meters

* Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: ****

New coordinates are (3.00000126827246 1.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 142 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 143 ****

New coordinates are (2.50000063413623 1.000796326458243)
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Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 144 **

New coordinates are (2.00000126827246 1.001592652916487)

New route step

New heading has been computed

Turn right -90.0 degrees

* Reorient Robot -90.0 degrees

***Time step: 145 **

* Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 146 **

*New coordinates are (2.000398163355367 1.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory

* Gyro updates memory

***Time Step: 147 **

New coordinates are (2.000796326710733 1.999999682931835)

Goal achieved P

Remaining resources: 909
Current location: work-bench
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Coordinates: (2.0 2.0)

Work-bench inventory recalled from Blackboard

work-bench-supplies obtained from cart

work-bench-supplies placed on work-bench p

Hove Robot
Start Location: work-bench
Destination: sensors I

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

S*** Time step: 148 ****

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

-9

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

S*** Time Step: 149 ****

New coordinates are (2.000398163355367 2.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 150 ****

New coordinates are (2.000796326710733 2.999999682931835)
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New route step

New heading has been computed
S

Turn right -90.0 degrees
Reorient Robot -90.0 degrees

**** Time step: 151 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 152 ****

New coordinates are (2.5 3.0)

Robot moves forward: 0.5 meters ,-.

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 153 ****

New coordinates are (3.0 3.0)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 154 **.

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

.** Time Step: 155 ***.
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New coordinates are (3.5 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 156 ****

New coordinates are (4.0 3.0)

Encoder updates memory
Sonar updates memory
Gyro updates -memory

***Time Step: 157 ** .

3New coordinates are (4.5 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 158 ****

FNew coordinates are (5.0 3.0)

Goal achieved

Remaining resources: 900
Current location: sensors
Coordinates: (5.0 3.0)

Sensor inventory recalled from Blackboard

sensor-supplies obtained from cart
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sensors repaired with sensor-supplies

Move Robot
Start Location: sensors
Destination: base

Encoder initializes memory
Sonar Initializes memory

* Gyro Initializes memory

***Time step: 159 **

Confirm Initialization

Heading error in Initialization

Calling Error Handler

New heading has been computed

Turn left 180.0 degrees
*Reorient Robot 180.0 degrees

Re-initialize memory

UEncoder initializes memory
Sonar Initializes memory
Gyro initializes memory

***Time step: 160 **

* Confirm Initialization

Initialization Confirmed

* Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 161 **

New coordinates are (4.50000063413623 3.000796326458243)

Robot moves forward: 0.5 meters
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Encoder updates memory
,Sonar updates memory

Gyro updates memory

**** Time Step: 162 ****

New coordinates are (4.00000126827246 3.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 163 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 164 ****

New coordinates are (3.50000063413623 3.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

~*** Time Step: 165 ****

New coordinates are (3.00000126827246 3.001592652916487)
p

New route step

New heading has been computed

Continue same heading for new segment
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***Time step: 166 **

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 167 **

New coordinates are (2.50000063413623 3.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 168 **

New coordinates are (2.00000126827246 3.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

***Time step: 169 **

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 170 **

New coordinates are (1.50000063413623 3.000796326458243)

Ir Robot moves forward: 0.5 meters

Encoder updates memory
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Sonar updates memoryGyro updates memory

S*** Time Step: 171 ****

New coordinates are (1.00000126827246 3.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 172 ****

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 173 ****

New coordinates are (0.5000006341362302 3.000796326458243)

Robot moves forward: 0.5 meters

Encoe u e m.
Encoder updates memorySonar updates memory ''

Gyro updates memory

*** Time Step: 174 ****

New coordinates are (1.268272460400177E-06 3.001592652916487)

New route step

New heading has been computed

Turn right -270.0 degrees
Reorient Robot -270.0 degrees

**** Time step: 175 ****
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Robot moves forward: 0.5 meters

q'. 41

Enoerudae mmr

Enodr updates memory
Syoa updates memory

***Time Step: 176 **

New coordinates are (0.0003981633553666474 2.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory L
Sonar updates memory
Gyro updates memory

***Time Step: 177 **

New coordinates are (0.0007963267107332947 2.000000317068165)

New route step

New heading has been computed

Continue same heading for new segment

***Time step: 178 **

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***Time Step: 179 **

New coordinates are (0.0003981633553666474 1.500000158534083)

Robot moves forward: 0.5 meters

Encodr upates emor
Enodr updates memory
Syoa updates memory

196



.Time Step: 180,

New coordinates are (0.0007963267107332947 1.000000317068165)

New route step M

New heading has been computed

Continue same heading for new segment

**** Time step: 181 **

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 182 ****

New coordinates are (0.0003981633553666474 0.5000001585340827)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 183 ****

New coordinates are (0.0007963267107332947 3.170681653480445E-07)

Goal achieved

Remaining resources: 882
Current location: base
Coordinates: (0.0 0.0) "-

t
-> (exit) %',
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